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ABSTRACT 

High gain operational amplifiers are by far the most fundamental building block in 

analog and mixed-signal design. In the first few chapters, design of high gain CMOS 

positive feedback amplifiers (PFAs) is studied. A low-voltage positive feedback amplifier in 

standard digital CMOS with � 3 transistors stacked between VDD and VSS is designed and 

circuit details are discussed. With the use of a linear precision MOS voltage attenuator and a 

digital tuning network, the PFA was simulated to have 100dB DC gain at the operating-point 

and > 70dB DC gain over a 2Vpp output swing range. Test results of fabricated chips 

confirmed better than 90dB operating-point DC gain, ≥60dB DC gain over 2Vpp. It has 

nearly 90 degrees of phase margin and 140MHz gain-bandwidth product when driving 1pF 

capacitive load with 1mA from 3.5V single supply.  

Both linear and nonlinear behaviors of the PFA are carefully studied in order to 

enhance and maintain high gain automatically. Inherent nonlinearity in its DC transfer curve 

is discovered and analyzed. Based on nonlinear dynamic systems and bifurcation theory, we 

predict bifurcation and hysteresis phenomena in the PFA. An algorithm, which can be 

implemented using simple digital logic, is developed to measure the PFA’s open-loop 

stability as the bifurcation parameter changes. Parameter-tuning algorithms are constructed 

that systematically move the amplifier’s operational point towards the bifurcation point, at 

which infinite DC gain happens. In order to compensate for the PFA’s high sensitivity to 

process and temperature variations, flexible analog design integrating digital 

programmability and inexpensive and adaptive digital post-processing techniques are 

developed. This flexibility and post-processing capability could dramatically enhance the 
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PFA’s yield. Full corner simulation results over wide temperature range verify the 

bifurcation phenomena and the effectiveness of the control algorithms.  It is shown that this 

amplifier can maintain high performance in the most advanced digital CMOS technology at 

very low voltage supplies. They also demonstrate that the proposed approach offers a robust 

PFA design with both high yield and high performance. 

Matching of critical components is the most fundamental property that is necessary in 

achieving high linearity performance of analog mixed-signal circuits. Although matching 

qualities in future advanced digital CMOS technology are forecast to deteriorate as feature 

sizes continue to shrink, there has not been significant progress in developing advanced 

matching layout strategies.  Chapter 4 is devoted to addressing this issue. In this chapter, 

systematic mismatch error in integrated circuits due to gradient effects is modeled and 

analyzed. Three layout strategies with improved matching performance are proposed and 

summarized. The hexagonal tessellation pattern can cancel quadratic gradient errors with 

only 3 units for each device and has high area-efficiency when extended. Both the Nth-order 

circular symmetry patterns and Nth-order central symmetry patterns can cancel up to Nth-

order gradient effects between two devices using 2N unit cells for each one. Among these 

three techniques, the central symmetry patterns have the best-reported matching performance 

for Manhattan structures; the circular-symmetry patterns have the best theoretical matching 

performance; and the hexagonal tessellation pattern has high density and high structural 

stability. The Nth-order central symmetry technique is compatible to all IC fabrication 

processes requiring no special design rules. Simulation results of these proposed techniques 

show better matching characteristics than other existing layout techniques under nonlinear 

gradient effects. Specifically, two pairs of P-poly resistors using 2nd and 3rd-order central 
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symmetry patterns were fabricated and tested. Less than 0.04% mismatch and less than 

0.002% mismatch were achieved for the 2nd and the 3rd-order structures, respectively. Our 

proposed new layout strategies improved matching performance significantly. 
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CHAPTER 1.  GENERAL INTRODUCTION 

1.1 Introduction 

Designing amplifiers, bias circuits, modulators, references, oscillators, analog filters, 

analog phase-locked-loops and data-converters belongs to analog circuit design. Both analog 

design and digital design have evolved from discrete to integration, both used different 

semiconductor materials, and both achieve great successes in MOS integration technology. 

Nowadays, analog integrated-circuit design dominates the area of analog circuit design and 

analog design is referred to analog integrated-circuit design. Analog design essentially 

includes circuits design and test. Because of the dominance of MOS technology, MOS 

analog design has become the most prevalent work. 

MOS technologies have advanced as Moore’s Law [1] predicted during the past four 

decades, which leads to higher integration densities, finer feature sizes and lower supply 

voltages. Exponential feature size shrinkage served as the main driver for semiconductor 

development. However, this traditional scaling has nearly reached its fundamental limit [2]. 

Recently, international technology roadmap for semiconductors (ITRS) identified 

three system-drivers supporting future semiconductor development: high-volume custom-

microprocessor unit (MPU), analog/mixed-signal (AMS), and system-on-chip (SOC) [2]. 

Mixed-signal/analog design plays a critical role in all these three system drivers: high-speed 

digital design is colligated to mixed-signal/analog design; AMS is directly related to mixed-

signal/analog design; part of a SOC can be associated with mixed-signal/analog design. A 

mixed-signal SOC requires both high performance digital part and high performance analog 



www.manaraa.com

 2 

 

part. Integrating analog functions in SOC is the trend and low cost is a key issue to achieve 

success. 

1.2 Difficulties in Analog Design 

Although mixed-signal/analog design plays so important roles in future 

semiconductor development, ITRS identified it as a difficult challenge and a bottleneck due 

to the following reasons. 

o Decreased supply voltage 

o Increased Interference between analog and digital blocks 

o Reduced testability 

o Increased parametric variations 

o Limited design productivity and skills 

• Difficulty 1: decreased supply voltage 

In designing analog functions in MOS technology, circuit designers are forced to use 

the technology chosen for the digital part of the circuit. For the classical analog design, 

supply voltage determines the maximum achievable signal level. Decreasing supply voltage 

reduces available signal power. Over the past four decades, feature size shrinking in digital 

CMOS is the basis for the development of semiconductor [1]. This shrinking reduces the 

supply voltage, which makes analog design tough. Because experts in semiconductor 

industry lack of good solutions, ITRS recommended using high supply voltage for analog 

devices [2]. As mentioned in ITRS, this method is not effective while expensive, and does 

not simplify design effort. When high supply voltage is used for analog circuits, special 

processing steps have to be added in the digital processes to keep analog devices reliable. 
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Typically, such actions will reduce the benefit introduced by feature-size shrinking greatly. 

Realizing high performance analog functionalities using the same digital supply voltage is 

still demanding for low-cost, high-performance and reliable analog/mixed-signal circuits and 

systems. 

 

• Difficulty 2: increased interference between analog and digital blocks 

In mixed-signal design, both analog supply and digital supply coexist on the same 

chip and both analog part and digital part share the same bulk. Signal coupling through 

substrate and interconnect is a serious issue in mixed-signal circuits as well as in high-speed 

applications [3, 4, 5]. Interference from digital supply to analog supply is another issue in 

mixed-signal circuits. Most high precision analog/mixed-signal circuits and systems require a 

stable supply. However, it is a nontrivial task, especially when more and more transistors are 

integrated in a smaller chip with feature size shrinking.  

• Difficulty 3: reduced testability 

Because of the trend of continuously higher integration, internal nodes are 

increasingly more difficult to reach. Design for test (DFT) and built-in-self-test (BIST) for 

analog/mixed-signal integrated circuits become a necessity [2, 6]. Traditional analog design 

lacks DFT and BIST techniques. Analog circuits are typically characterized using high 

precision stimuli and high-resolution measurement. Researchers are naturally thinking of 

transplanting these accurate stimuli and measurement on a chip and modifying their designs 

to enable these on-chip tests [7]. However, accurate characterization of analog circuits is a 

challenging task even with the highly accurate testers whose value is in a few million of US 
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dollars. Integrating these high precision analog stimuli and high-resolution measurement on a 

chip is dauntingly expensive and nearly impossible. Testing requirements for future analog 

circuits call for the evolution of new analog design, which requires only low-precision 

stimuli and low-resolution measurements [8].  

• Difficulty 4: increased parametric variations 

ITRS has also indicated “increasing relative parametric variations” another most 

daunting mixed-signal challenge. These variations were once known as process variations. 

With the shrinking of feature size in CMOS technology, fabrication process becomes more 

complex. This has increased process variations. ITRS suggested “active mismatch 

compensation and tradeoffs between speed and resolution”. Post-processing on designed-

redundancy is an effective way to compensate process variations. Traditional analog/mixed-

signal design uses sliding-contact, Zener Zapping, fusible links and laser trimming 

techniques to calibrate the fabricated chips so the calibrated chips will get better performance 

under calibration environment [9]. Because of the randomness of process variations, 

theoretically, every chip should be calibrated separately. In product test and calibration 

procedure, a few chips in a wafer are first calibrated separately and then the average 

calibration pattern is applied to the whole wafer or even a whole run to reduce test-

calibration cost. Most of these methods require expensive testers and special calibration 

tools. Because semiconductor devices are highly temperature related, analog circuits is 

sensitive to temperature variations. In order to measure circuits’ performances at different 

temperatures, test engineers use oven to emulate the application environments. This 

procedure is time-consuming and expensive. In order to limit test and post-processing cost, 

industry typically calibrates the analog/mixed-signal circuits in the most convenient test 
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environment. Analog/mixed-signal circuits’ performance can deviate a lot if the application 

conditions are far away from the testing conditions.  

Digital calibration techniques have been successfully used in mixed-signal circuits 

such as data converters within high supply voltages [10, 11, 12, 13, 14]. It shows economic 

advantages over traditional trimming and fuse based post-processing techniques. However, 

not much research efforts on digital post-processing have resulted in practical solutions to 

enhance analog/mixed-signal circuits’ performance. Lack of economic solutions in low-

voltage applications remains a key obstacle. 

• Difficulty 5: limited design productivity and skills 

Traditional analog design was considered as an art instead of a scientific technique. It 

is more of an experience-based than knowledge-based approach. Circuit designers use trial-

and-error way to design high performance analog circuits, which requires special expertise 

and lots of time gaining such experiences. This approach increases design cost exponentially 

when a new technology is introduced. ITRS has identified “shortage of design skills and 

productivity” as one of the most daunting mixed-signal challenges. Without bringing new 

design methodologies, the shortage of design skills and productivity will continue to increase 

because of the high standard and cost for engineers entering this area. 

1.3 High Gain Amplifier Design in Low-Voltage Digital CMOS 

Amplifier design, the most fundamental analog design, can illustrate the huge impact 

of technology advancement and the imminent requirement for innovative combination of 

diverse science knowledge. 
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The monolithic operational amplifier (op amp) is by far the most widely known and 

used analog circuit and analog building block in analog/mixed-signal systems, including 

continuous-time filters, switched-capacitor amplifiers, delta-sigma modulators, pipeline 

ADCs, DACs and other countless applications. Since its introduction in the mid 1960s, the 

monolithic op amp has proliferated into many different designs. The MOS op amp designs 

have become the most important building blocks of analog circuits because of the fast 

advancement of MOS fabrication technologies.  

1.3.1 Key performance indexes of an amplifier 

An amplifier has several key performance metrics: DC gain, gain-linearity, gain-

bandwidth-product, phase-margin, power consumption, common-mode rejection ratio 

(CMRR) and so on. Among these parameters, DC gain, gain linearity and gain-bandwidth-

product and power consumption are in our interest. 

o DC gain 

An ideal op amp has an infinite DC gain while a practical op-amp can approximate 

the ideal op-amp well in low frequency [9]. DC gain, a key index of the op-amp, plays a 

critical role in high precision systems. For example, DC gain determines gain error in a 

switched capacitor amplifier, and this determines the final settled signal accuracy [15]. The 

amplifier in a pipeline ADC stage plays a critical role for the available ADC performance. 

High resolution ADC requires a high gain amplifier to limit performance degradation 

introduced by gain error [16].  

o Gain linearity 

Open loop gain linearity determines available signal/distortion ratio in close-loop 

configured amplifiers. Most circuit designers were directly mapping open-loop gain 
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nonlinearity to close-loop nonlinearity and thus were reluctant to use high gain highly 

nonlinear amplifiers in pipeline stages, for fear of poor performance for total harmonics 

distortion (THD) and spurious-free dynamic ratio (SFDR). However, high open-loop gain 

helps to reduce signal distortion in close loop configurations [16]. 

o Gain-bandwidth product(GB) and power consumption 

GB reflects how fast the op-amp can operate. In switched capacitor amplifiers, this 

parameter indicates how fast the charge can be transferred to the output. GB is directly 

related to power consumption. 

1.3.2 High gain amplifier structures 

Telescopic cascode, folded cascode, regulated cascode amplifiers have successfully 

realized both high DC gain and large output swings at large feature size with high supply 

voltages [15]. However, these traditional amplifier structures have failed to maintain both 

high gain and large output swings simultaneously at the advanced CMOS technologies due to 

dramatically reduced supply voltages.  A telescopic or folded cascode structure can maintain 

moderate gain; however, it cannot provide sufficiently large output swings [15]. A multi-

stage cascade structure with simple differential stages can provide large output swings; 

however, the structure is unfavorable because of the degradation of frequency-response due 

to complex compensation [15]. Positive feedback structures have the potential to provide 

low-voltage compatibility, large output swings and good frequency responses simultaneously 

[17, 18, 19, 20, and 21]. However, it is sensitive to process and temperature variations and 

yield tends to be much less than other kind of amplifiers.  
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1.3.3 Focus of our research 

 Our research aims at enhancing the positive feedback amplifier’s gain and yield over 

process, voltage and temperature variations through different calibration schemes with the 

help of nonlinear system dynamical theories.  

 

1.4 Thesis Organization 

In addition to this introduction, this thesis consists of 5 more chapters. Chapter 2 

discusses a single-stage positive feedback amplifier (PFA) suitable for driving capacitive 

feedback. It utilized an adjustable linear MOS attenuator in the positive feedback path which 

provided stable negative-conductance cancellation over wide process-supply voltage-

temperature (PVT) variations. Simulations suggested it achieved greater than 80dB DC gain 

and test results confirmed this for all fabricated amplifiers. Chapter 3 illustrated nonlinear 

bifurcation phenomenon in the PFA and its application in automatically calibrating the PFA 

to its highest performance despite large PVT variations. This would solve the major limit in 

the PFA-- improving yield. This chapter is expanded from “Robust design of high gain 

amplifiers using dynamical Systems and bifurcation theory” [26, 27].  In this chapter, we 

introduced a two-loop binary search algorithm to automatically and efficiently search the 

optimal feedback factor. Our new algorithm is based on bi-state detection with pull-up pull-

down methods. In analog/mixed-signal design, matching is the most critical property to 

achievable performance. Three new layout techniques are developed and good matching is 

obtained. Chapter 4 summarizes these results. In chapter 5, the relationship between open-

loop nonlinearity and close-loop linearity was quantitatively investigated. This chapter is 

expanded from “Equivalent gain analysis of nonlinear operational amplifier” [16] and its 
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deduction is fully proven by thorough theoretical derivations. Chapter 6 concludes this 

dissertation.  
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CHAPTER 2. A POSITIVE FEEDBACK AMPLIFIER IN DIGITAL 

CMOS 

Chengming He, Degang Chen, Randall Geiger 

 

Abstract 

A low-voltage positive feedback amplifier in standard digital CMOS with � 3 

transistors stacked between VDD and VSS is presented and circuit details are discussed. With 

the use of a linear precision MOS voltage attenuator and a digital tuning network, the PFA 

was simulated to have 100dB operating-point DC gain. Test results of fabricated chips 

confirmed better than 90 dB operating-point DC gain, ≥ 60dB DC gain over 2 Vpp output 

swing. It has nearly 90 degrees of phase margin and 140 MHz gain-bandwidth product when 

driving 1 pF capacitive load with 1mA current from a single 3.5 V supply. 

I. Introduction 

For the past four decades, the semiconductor industry has advanced as Moore’s Law 

predicted [1]. The advances in CMOS process technologies have pushed the feature sizes 

below 90nm [2] and reduced supply voltages significantly to ensure reliability. However the 

threshold voltages for digital transistors have not decreased as quickly as supply voltages 

because of the need to avoid large-scale leakage. Such changes impose significant challenges 

to analog circuit design, in particular to designs of high-gain, large output, swing amplifiers 

[3]. Cascoding and multi-stage cascading are two traditional design solutions for high-gain 

amplifiers. With more than 4 transistors stacking from VDD to VSS, cascoding is not 
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suitable for low-voltage applications with large output swing requirements.  Though 

cascading is compatible with low voltage, its frequency response is often degraded too much 

by complex compensation. Positive-feedback technique and negative conductance 

cancellation has been shown to be an effective alternative to achieve high DC gain with good 

frequency response while also achieving the potential of low-voltage supply applications 

[4 5]. However, most positive feedback structures rely heavily on matching, which makes it 

dauntingly difficult to maintain performance over process and temperature variations. 

Furthermore, most positive-feedback amplifiers show strong nonlinearity in the form of sharp 

gain decreases as the output swing becomes large. Efforts have been made to decrease the 

gain dependence on output swing [6].  

This paper describes a fully differential positive feedback amplifier with an internal 

positive attenuation feedback. Fully differential structure provides both positive and negative 

outputs, which make it easy to generate negative conductance. The attenuator uses solely 

MOS devices while providing high attenuation that is insensitive to process-supply 

temperature variations, making one design variable highly controllable. This geometric ratio-

dependent precision MOS attenuator also helps decrease gain sensitivity to output swing. The 

amplifier stacks a maximum of only 3 transistors between VDD and VSS, which makes it 

well suited for low-voltage applications. Single-stage configuration has an inherent 

advantage in frequency response, stability, settling speed, and power efficiency in achieving 

the required gain-bandwidth product. A high DC gain over the full output swing range is 

achieved with the help of a digital tuning network. Test results confirmed the design and 

simulation results. 
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Section II discusses the new positive-feedback amplifier architecture and circuit 

details. In Section III, simulation results are discussed and test results are presented. Section 

IV summarizes the outcome of the research project. 

II. Amplifier Structure and Circuit Detail 

2.1 Proposed positive feedback amplifier 

Fig. 1 shows the concept of conductance-cancellation amplifier. It consists of a 

transconductance (gm) cell and a resistive load of -R2 in parallel with R1. It can be shown that 

this amplifier has a gain 

 
2112

21

gg
g

RR
RR

gA m
m −

=
−

−= , (1) 

and the gain will reach infinity if g2 is equal to g1. 

-R2R1gmvi

vo

vi -R2R1gmvi

vo

vi

 

Fig. 1 concept of negative conductance cancellation 

Practically, fully differential structure provides a simple solution to realize negative 

conductance since it has complementary outputs. Fig. 2 shows the basic architecture of the 

proposed positive feedback amplifier (PFA). Equation (2) can be derived using small-signal-

equivalent circuit analysis for the differential signal path with denoting 21 ooo vvv −=  and 

21 iii vvv −=  
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Fig. 2 a) proposed positive feedback amplifier; b) small-signal equivalence 

Define  
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this suggests the positive feedback amplifier will achieve an infinite DC gain when 0µµ =  

while µ is less than 1. 



www.manaraa.com

 16 

 

2.2 Precision MOS attenuator 

2.2.1 Active linear NMOS voltage divider 

Fig. 3 displays an active linear NMOS voltage divider first proposed by Kim [7]. 

Equation (4) expresses its attenuation factor, 

 θ−−= 11k  and 
2211

22

//
/

LWLW
LW

+
=θ . (4) 
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Fig. 3 an active linear NMOS voltage divider 

The attenuator shown in Fig. 3 provides some interesting properties. Parameter � is a 

geometric ratio that does not scale with processes and can be well controlled by layout. The 

attenuation k is only dependent on geometric ratio �, thus it could be made extremely precise. 

In addition, this voltage divider has infinite DC impedance at its input, which will not change 

the operating-point of the main amplifier. 
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2.2.2 Proposed programmable precision MOS attenuator 

Fig. 4 shows the proposed precision MOS attenuator consisting of three cascading 

voltage dividers. The first stage is composed of M1 and M2, the second of M3 and M4 

(PMOS), while the third stage consists of M5 and M6. The total attenuation is expressed in (5) 

 321 kkk=µ . (5) 
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Fig. 4 precision MOS Attenuator 

Cascading structure provides not only quiescent operating-point shift but also 

appropriate biasing for the MOS transistors that generate negative conductance. Furthermore, 

total attenuation µ is allocated in three stages with scaled-up attenuations, which reduces 

sensitivity to process variations. This was confirmed by simulations. 
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2.2.3 Digital programmability and quantitative analysis 

Previous studies have shown that the positive feedback amplifier is sensitive to 

process and temperature variations. In order to overcome these variations, the internal 

feedback should have sufficient adjustment range and provide convenient external control. 

This adjustment range is PVT dependent, which can be obtained by corner simulations. 

Denote this range as (6) 

 ],[ max0min0 µµ . (6) 

Ideally, continuous adjustment is preferred in order to maintain infinite DC gain over 

PVT variations. However, discrete control with digital logic provides robustness and 

simplicity while maintaining sufficient performance in most applications.  Theoretically, a 

N1-bit binary-weighted DAC provides 12N possible attenuation values.  Defining Γ to be the 

equivalence of input codes and ∆ the LSB of the DAC (assuming ∆>0), the ideal attenuation 

µ can be expressed as (7) 

 ∆Γ+= mµµ .  (7) 

In order to assure the design has sufficient tuning range, the attenuator must meet 

certain specifications depending on the desired amplifier DC gain. According to (2), (3) and 

(7), the amplifier gain can be rewritten as (8) 
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Equation (9) shows that the optimal control code for the maximum DC gain falls in  
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For the sake of simplicity, 21 / mm gg can be approximated to be 1. Thus the lower 

bound DC gain of the positive feedback amplifier could be estimated as  

 ∆≥ /1A . (10) 

2.2.4 Design specifications for the attenuator DAC 

Given the above analysis (equation 6-10), it is feasible for a designer to discover the 

specifications for the attenuator DAC. To achieve certain yield over PVT, three conditions 

must be met: sufficient coverage (11), fine resolution (12), and required DAC size (13): 

 )2()0( 1
max0min0

N=Γ<<<=Γ µµµµ , (11) 

 
specAN

1
)}()1({max

120 1
=∆≤Γ−+Γ=

−≤Γ≤
µµε µ , (12) 

 
∆
−≥ min0max012

µµN .  (13) 

The sufficient coverage condition (11) is solely related to the required adjustment 

range (6). Although, one can argue for the use of equal sign in both lower and upper bounds, 

the more stringent and conservative inequality sign was imposed for the sake of simplicity. 

The fine-resolution condition (12) places a stricter requirement on the DAC DNL, 

while equation (13) determines the minimal DAC size. For a very high desired DC gain specA  

and wide adjustment range, the DAC design could become nontrivial. However, for realistic 

gain requirements, e.g., 80dB minimum, the necessary adjustment range is quite modest. This 

makes the DAC design a relative easy task. For example, in the AMI-0.5um process, 

simulation results show that a simple 6-bit DAC with LSB=0.00007 is sufficient. In order to 

leave some design margin, a 7-bit DAC was integrated into the precision MOS attenuator.  



www.manaraa.com

 20 

 

2.2.5 Attenuator DAC linearity and attenuation sensitivity to PVT 

Fig. 5 illustrates the total attenuation with different DAC control codes. Notice that 

monotonicity of the DAC is well maintained and DNL/INL is also reasonably low. Though, 

as will be demonstrated late, the linearity performance of the DAC is noncritical.  
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Fig. 5 attenuation versus DAC codes 

Fig. 6 shows the attenuator’s strong insensitivity to supply voltage. As a result, in the 

first order approximation the effect of supply variation on the attenuator can be ignored. 
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Fig. 6 attenuation sensitivity to supply change 
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III. Simulation Results 

The proposed amplifier shown in Fig. 2 was simulated over process (TT, SS, FF, SF 

and FS), supply (3.0-4.0V) and temperature (0-100oC) variations. More than 80dB DC gain 

was simulated with appropriate selection of digital control codes. For the typical corner in 

particular, DC gain of 110 dB was achieved with an optimal 7-bit control code at room 

temperature (shown in Fig. 7).  

 

Fig. 7 AC response of the single-stage, positive-feedback amplifier 

Simulations also verified that temperature would affect the amplifier’s performance. 

With a fixed control code obtained at a certain temperature, the amplifier gain performance 

degrades as operating temperature varies. Thus, in-field recalibration is preferred. Fig. 8 

shows the DC gain over wide temperature range with and without temperature compensation. 

Temperature compensation (or re-calibration) helps maintain performance.  
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Fig. 8 DC gain with temperature variations 

The effect of selecting an incorrect control code on performance was also studied. Fig. 

9 displays the gain sensitivity to control-codes. With a fixed control code, the DC gain 

dropped quickly as the output swing increased. However, when the control code was adjusted 

accordingly, more than 85dB DC gain was maintained over an output swing range of 2Vpp. 

 

Fig. 9 simulated amplifier DC gain versus output swing (with/without adjusting attenuation) 
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IV. Layout and Fabrication 

Matching of analog circuits is critical for performance. Common-centroid and 

symmetric layout techniques are widely adopted in analog circuitry for parameter matching 

and thermal balance. For this project, the PFA core was selected for fabrication. Layouts of 

all transistors were drawn carefully, as shown in Fig. 10. Its input NMOS pair and negative-

conductive PMOS pair fully explored common-centroid technique, while biasing current 

NMOS uses multi-finger structure with source/drain sharing technique. Input pair and load 

pair are placed in two different guard-rings to improve signal isolation. 
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Fig. 10 common-centroid layout within guard-rings 

The internal feedback pair was placed as close as possible in a center-symmetric way. 

These techniques help obtain good matching. 

Fig. 11 shows the fabricated amplifier through the MOSIS education program 

including PADS. Its core area is 280um*120um. This amplifier was designed, simulated, and 

fabricated with an AMI 0.5um digital CMOS process. 
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Fig. 11 Die photo of the fabricated amplifier with auxiliary circuits 

V. Testing/Tuning and Measurement 

With capacitive loads in the output, the main pole of the open-loop amplifier may 

vary from negative to positive depending on the attenuation factor µ. Theory of linear 

systems indicates that a system is stable if all poles are in the left half-plane, and that the 

system becomes unstable if any pole moves into the right half-plane. Because positive 

feedback can cause one or more open-loop poles of an amplifier to move into the right half-

plane, traditional wisdom in IC design has led designers to avoid positive feedback amplifiers. 

Such caution is unjustified since an Opamp is never intended to be used in open-loop and 

closed-loop stability can be easily guaranteed with appropriate feedback [8].  
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That the open-loop stability of the amplifier can be changed from stable to unstable 

with different levels of positive feedback motivates a tuning strategy for this positive 

feedback amplifier. Recall that the positive feedback factor is directly controlled by the 

attenuator factor µ, which is in turn controlled by a small tuning DAC. Gradually changing 

the DAC input code can cause the amplifier’s dominant open-loop pole to move from the left 

half plane into the right half plane. Because of this, an optimal DAC input code will cause 

the amplifier open-loop pole to be closest to the origin. When this happens, the amplifier’s 

DC gain reaches maximum. Also when the amplifier’s dominant pole changes sign, the DC 

gain of the amplifier also changes sign. Therefore, the input-output relationship changes from 

“in phase” to “phase inversion”. This change of “in-phase” can be used as an indicator that 

the control DAC’s input code has changed from small to large, allowing a determination of 

whether the optimal code has been identified. Due to process variations, each amplifier will 

have a different “optimal code” at a certain operating point. The phase inversion detection [8, 

9] technique can be used during testing to capture the individual optimal code. 

5.1 Phase inversion detection 
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Fig. 12 phase inversion concept 
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Fig. 12 shows the basic idea of phase inversion detection. It consists of the amplifier 

core, two buffers, resistive feedback network, one high-gain comparator C1 and one low-gain 

comparator, C2, as well as a digital XOR-gate. 

As shown in equation (1), the DC-gain could be either positive or negative. When the 

amplifier is configured in a close loop, the feedback network can be easily designed to make 

the loop stable. Depending on the stability of the open-loop amplifier, polarity of the input 

could be either as the same as the output or opposite to the output.  This can be explained 

using equation (14) for low-frequency signals: 

 
A

VV
VV oo

−+
−+ −=− . (14) 

When a square wave is inserted into the input, the output will also be in square wave. 

If the open-loop amplifier is stable, phase of the internal input −+ −VV will be opposite to the 

output. Otherwise, both are in-phase. This property is illustrated in Fig. 13. These waveforms 

can be used to indicate the amplifier’s open-loop stability.  

output

Internal input

Right half plane pole Left half plane pole
 

Fig. 13 input/output waveforms with pole locations 
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The waveforms shown in Fig. 13 are for illustration purpose and are not drawn in 

proportion. In fact, the input signal is very weak due to high gain of the amplifier under test. 

A high-gain comparator (C1) amplifies the weak signal and helps to determine the polarity. 

As shown in Fig. 12, a low-gain comparator (C2) also digitalizes the output signal. 

Two comparator’s outputs (in digital level) indicate the pole location of the amplifier. ‘1’, 

given by the XOR gate, indicates right-half plane poles, while ‘0’ implies left-half plane 

poles. Accordingly, ‘1’ indicates a need to reduce the internal feedback µ while ‘0’ means 

larger µ is needed. Thus, the best control code optΓ  for the optimal feedback factor optµ  

would be located after a few steps of such comparison. Assuming the DAC attenuator has 

good INL/DNL, both linear searching and binary searching methods are feasible. If this 

function can be realized using logic control, a positive-feedback amplifier with automatic 

gain enhancement will be realized.  

5.2 Challenges in the phase inversion detection technique 

Theoretically, phase-inversion detection provides a ready solution to determine the 

amplifier’s open-loop pole location. However, as shown in Fig. 13, a major challenge is 

designing the high gain comparator C1. It must have very low offset and high DC gain.  

5.2.1 Low offset 

Equation (14) shows the largest possible signal at the amplifier’s input is inversely 

proportional to its gain and proportional to the amplifier’s output. It is also true the output 

cannot exceed its linear operation-region. So the absolute value of the offset in the 
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comparator must be much smaller than the input signal so the polarity in the amplifier can be 

measured.  

5.2.2 High gain 

Because the total output conductance increases with the output swing, the output level 

should be limited to certain value so near-operating-point DC gain can be measured 

accurately. Assuming the amplifier’s output is 10 times less than the ‘digital high’, the 

comparator must have 10 times more gain than the amplifier so a correct digital level signal 

can be generated. Because the DC-gain of the amplifier is targeted to be very high, it is 

necessary to design a comparator with a much higher gain in order to amplifier input 

correctly. Meanwhile, the comparator’s offset should be very low. This becomes a very 

difficult task and significantly limits the performance of the amplifier. 

5.3 Real test setup 
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Fig. 14 test setup 
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Because of these difficulties, the automatic measurement was not implemented. 

Instead, AC-coupling and an external amplifier were used while measuring phase with an 

oscilloscope. Fig. 14 shows the final setup in testing. 

5.4 Measurement 

 

a) 

 

b) 
Fig. 15 captured waveforms with a) in-phase; b) phase-inversion 

 
MOSIS delivered 5 chips with package. Manual tuning was based on phase-inversion 

detection. Fig. 15 shows captured waveforms with both in-phase and phase-inversion cases. 
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All 5 chips were tested and measurement is summarized in Table 2-1. The minimal 

DC gain at room temperature is 84.5dB while the maximum gain exceeded 90dB even 

though it could not be measured accurately. 

Table 2-1 Measured DC gain of fabricated chips 

Chip #1 #2 #3 #4 #5 

Gain(dB) 90 87.6 89.3 84.5 86.5 

Output-level dependent gain was also observed. Using different control-code at 

different output level, the dropped-DC gain was re-enhanced, and >76dB DC gain over 2Vpp 

was maintained. Measurement results were compared to simulation results, and both matched 

quite well as shown in Fig. 16. 

 

Fig. 16 measured and simulated amplifier’s DC gain 
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VI. Conclusions 

A single-stage, full-differential, positive-feedback amplifier with more than 80dB 

gain over wide output swing in standard digital CMOS was designed. It stacks only 3 

transistors from supply to ground, which makes it low-voltage applicable with excellent 

frequency response thanks to the single-stage structure. A modified testing method using 

digital-level testing result based on phase-inversion detection was proposed. Unlike most 

positive-feedback amplifier structures, which are highly reliant on fabrication matching and 

whose gain drops quickly with output swing, the proposed amplifier uses a newly invented, 

digital-programmable precision MOS attenuator, an output-level monitor circuit block, and a 

specific tuning and mapping scheme to maintain its high gain over the whole output swing. 

With the integration of a sufficient resolution- and range-programmable DAC attenuator, this 

amplifier can achieve high gain over process, supply, and temperature variations, which 

improves fabrication yield dramatically without significantly increasing cost. 

This single-stage positive feedback is well suited to drive capacitive load and a 

capacitive feedback network. It can be used in high-speed, high-resolution data converters, 

high-speed comparators, and can also function as a basic analog building block in large 

systems. It will significantly reduce fabrication costs for mixed-signal systems in low-voltage 

applications. 
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CHAPTER 3.  AUTOMATIC TUNING OF POSITIVE FEEDBACK 

AMPLIFIERS USING DIGITAL POST PROCESSING 

TECHNIQUES BASED ON DYNAMICAL SYSTEMS AND 

BIFURCATION THEORY 

A paper accepted by IEEE Transactions on circuits and systems I  

Chengming He, Le Jin, Degang Chen, Randall Geiger 

Abstract: A positive feedback differential CMOS amplifier (PFA) and inherent 

nonlinearity in its DC transfer curve were analyzed. Based on nonlinear dynamic systems 

and bifurcation theory, we predicted bifurcation and hysteresis phenomena in the PFA. An 

algorithm, which can be implemented using simple digital logic, was developed to measure 

the PFA’s open-loop stability as the bifurcation parameter changes. Parameter-tuning 

algorithms were constructed that systematically move the amplifier’s operational point 

towards the bifurcation point, at which infinite DC gain happens. In order to compensate for 

the PFA’s high sensitivity to process and temperature variations, flexible analog design 

integrating digital programmability and inexpensive and adaptive digital post-processing 

techniques were developed. This flexibility and post-processing capability could 

dramatically enhance the PFA’s yield. Full corner simulation results over wide temperature 

range verified the bifurcation phenomena and the effectiveness of the control algorithms.  It 

is shown that this amplifier can maintain high performance in the most advanced digital 

CMOS technology at very low voltage supply. They also demonstrate that the proposed 

approach offers a robust PFA design with both high yield and high performance.  
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Key words: high gain, amplifier, and bifurcation 

I. Introduction 

Recently, experts identified System-on-a-chip (SOC) as one of the next generation 

drivers for the semiconductor industry [1]. Integrating analog functions in SOC is the trend 

and low cost is a key to success. In particular, high performance mixed-signal SOCs in 

inexpensive standard digital CMOS processes will be in high demand. However, the same 

group of experts also identified mixed-signal design as a difficult challenge and analog 

circuit design as a bottleneck in the process towards SOC.  

The operational amplifier, or Op-amp, is by far the most common and important 

category analog circuit. Because of the success of MOS technologies, the MOS Op-amp 

design has become one of the most important analog circuit designs. Realization of high 

performance MOS amplifiers in standard digital CMOS is a key to implementing low-cost 

mixed-signal SOCs. Among these MOS amplifiers, high gain high speed amplifier is one 

especially important category.  

Cascoding with gain-boosting and multi-stage cascading have been proven to be 

effective in achieving high gain with moderate-to-high voltage supplies. On the other hand, 

positive-feedback technique has been shown to be more promising in achieving high DC gain 

with good frequency response in low-voltage applications [9-13]. A pre-amplifier with 

positive feedback is often used for high-speed comparators.  The pre-amplifier uses cross-

coupled and diode-connected MOSFET pairs. Transconductance gm of the cross-coupled pair 

acts as negative conductance and gm of the diode-connected pair acts as positive conductance. 

This structure will have hysteresis when the negative conductance is larger than the positive 
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one. However, high-gain amplifier design prefers no-hysteresis as well as good matching 

between the positive and negative conductance. It is challenging to achieve high yield due to 

the difficulty of matching as well as the temperature and process variations. Previous studies 

concluded that achieving a fixed positive feedback amplifier design under all variations 

would gain little improvement while adding too much cost. Yan [12] introduced a 

continuous-time adjusting scheme to digitally calibrate the positive feedback amplifier. He 

[13] investigated a discrete adjusting scheme to calibrate the positive feedback amplifier. 

Both [12] and [13] used phase-inversion-detection techniques and enhanced amplifier’s gain 

and yield. However, they required high-gain low-offset comparators which are difficult to 

realize and required heavy human-interferences, making calibration time-consuming and 

amplifiers expensive. Low yield as well as high cost is still the major limitations. 

Furthermore, such positive-feedback amplifiers show strong non-linearity [12, 13]. 

Efforts have been made to decrease the gain dependence on output swing but few achieved a 

practical solution. Traditional circuit designers typically use linear models [14] to study 

analog circuits or even call those circuits “linear circuits”, but nonlinearity in circuits 

becomes more apparent with feature size shrinking. Although linear models are still valid in 

certain applications, knowing the non-linearity in circuit/device level can help us identify 

circuit non-ideality, avoid the disadvantages of non-linearity and even make use of the 

advantages of nonlinearity.  

This work resolves the main limitation of yield in the PFA by introducing adaptive-

feedback control based on the discovery of bifurcation. The work also enhances 

understanding of circuit performance with the help of the nonlinear dynamic systems theory. 

This paper first introduces bifurcation phenomenon in non-linear dynamic systems [15]. 
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Section III provides theoretical analysis of dynamic behavior in a positive feedback amplifier 

[13]. This analysis also explains the nonlinearity in the positive feedback amplifier. 

Parameter dependency of bifurcation [15] is used to study the positive feedback amplifier, 

and bi-state detection with pull-up and pull-down is developed to maintain a high DC gain. 

Section IV discusses two digital post-processing techniques, bifurcation detection and 

branching parameter driving algorithms. Both algorithms were verified valid using 

MATLAB™ as well as Cadence™ mixed-signal simulation tools. These algorithms do not 

require high-gain low-offset comparators, which overcome the shortcoming of [12] and [13]. 

Section V presents system and circuit level simulation results using industrial BSIM3v3 

models and section VI concludes this paper.  

II. Dynamical Systems and Bifurcation Theory 

Bifurcation [15] is one commonly encountered nonlinear phenomenon in dynamical 

systems. In order to explain bifurcation clearly, differential equation (1) is introduced, 

 3
0 )( yyy −−= µµ� , (1) 

where 0µ  is a constant. For 0µµ > , there are two stable equilibria, 0µµ −±=y  and one 

unstable equilibrium 00 =y . For 0µµ ≤ , there is only one stable equilibrium at 00 =y . We 

call point ( 00 =y , 0µ ) a bifurcation point and µ the branching parameter. Fig. 1 shows the 

branch diagram of this supercritical pitchfork bifurcation. 
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Fig. 1 supercritical pitchfork bifurcation 

Bifurcation points can be identified through certain algebraic properties. Let 

  3
0 )(),( yyyf −−= µµµ . (2) 

We can get the derivatives of ),( µyf  respect to y and µ as 

 2
0 3)(),( yyf y −−= µµµ , 

and yyf =),( µµ . (3) 

If the matrix [ ),( 00 µyf y ),( 00 µµ yf ] is singular, the point ( 0y , 0µ ) is a bifurcation 

point.  

In the supercritical pitchfork case, [ ),( 00 µyf y ),( 00 µµ yf ]=[0 0]. This suggests the 

branching point ( 0y , 0µ ) is a bifurcation point. 

It can be shown that y will converge to 00 =y  with time going when 0µµ ≤  no 

matter how the initial condition is. If 0µµ > , y will converge to 0µµ −=y  when 0
0

>
=t

y  

or converge to 0µµ −−=y  when 0
0

<
=t

y (shown in Fig. 1). Thus, it is possible to detect 

and move the branching parameter µ to µ0. In the following sections, we will demonstrate the 

application of bifurcation in the realization of a high performance analog function. 
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III. Positive Feedback Amplifier 

Fig. 2 depicts a positive feedback amplifier [13], where the gates of PMOS transistors 

(current source load) are connected to its output through a feedback buffer with attenuation 

of µ. Using small signal equivalence shown in Fig. 3 to analyze the positive feedback 

amplifier, we can show the amplifier has an attenuation-dependent DC gain (4), 

 
mponop

mn

ggg
g

A
µ−+

= ,  (4) 

where 2
EBPppop Vg βλ= , 2

EBNnnon Vg βλ= , )](1[2 SSOCMnEBNnmn VVVg −+= λβ , and 

)](1[2 OCMDDpEBPpmp VVVg −+= λβ . Define 

 
mp

onop

g

gg +
=0µ ,  (5) 

we can see that the amplifier will have an infinite DC gain when 0µµ = .  
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Fig. 2 a positive feedback amplifier 
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Fig. 3 small signal equivalence of the positive feedback amplifier 
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However, we need more information to search and maintain the optimal attenuation 

over process and temperature variations, where the nonlinear dynamic theory is found to be 

helpful [16]. 

A. Amplifier’s dynamic 

Level 1 Schichman-Hodges model [17] is used to derive the system dynamic. This 

model includes the channel length modulation effect where )1(2
DSEB VVI λβ += . We denote 

THNGSNEBN VVV −= , THPSGPEBP VVV += , 11 iICMi vVV += , 22 iICMi vVV += , 11 oOCMo vVV += , 

and 22 oOCMo vVV += . Using these denotations, the dynamic of this amplifier can be written 

as 

 )](1[)()](1[)( 1
2

11
2

2
1

SoOCMniEBNnoOCMDDpoEBPp
o

L VvVvVvVVvV
dt

dv
C −+++−−−+−= λβλµβ

 

 )](1[)()](1[)( 2
2

12
2

1
2

SoOCMniEBNnoOCMDDpoEBPp
o

L VvVvVvVVvV
dt

dv
C −+++−−−+−= λβλµβ . (6) 

For simplicity, we will use 2/21 iii vvv =−=  and 21 ooo vvv −=  in our later 

discussions. If the circuit has very good common mode reject ratio (CMRR), we 

have
221
o

oo

v
vv =−= . By letting ovy = , ivx = , (6) can be rewritten as 

 x
C
g

y
C

xVV
y

C
y

C

ggg
y

L

mn

L

SOCMnnn

L

pp

L

mponop −
−+

−−
−+

−=
4

)](1[
4

2
3

2 λλβλβµµ
� . (7) 

B. DC transfer characteristics 

In equation (7), solving 0=y�  gives us the amplifier’s DC transfer characteristics, 

 0])([ 2
0

32 =++−+ cxybxay µµµ , (8) 

where ppmpga λβ //4= , ppSOCMnnn VVb λβλλβ //)](1[ −+=  and ppmngc λβ //4= . 
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Fig. 4 shows the solution to (8). When µ�µ0, the DC transfer curve of the positive 

feedback amplifier behaves like an open-loop amplifier. However, when µ>µ0, the circuit 

shows hysteresis in its DC transfer curves. It is really interesting to study this unusual 

property.  

 

µ

x

y

�

��������

0.0210.021

0.030.03

 

Fig. 4 DC transfer curves of the positive feedback amplifier.  

C. Bifurcation without excitation 

When x=0, we rewrite (8) as 

 0)( 0
32 =−+ yay µµµ . (9) 

It turns out that for 0µµ >  there are two stable equilibria with 2
0 /)( µµµ −±= ay  

and one unstable equilibrium 00 =y , whereas for 0µµ ≤ there is only one stable 

equilibrium 00 =y . Fig. 5 shows the branching diagram. The symmetry of the branching 

diagram with respect to the µ-axis reflects the basic assumption of perfect symmetry. 

This branching diagram has a branching point at 

 )/)(,0(),( 00 mponop gggy +=µ . (10) 
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It is easy to show that [ ),( 00 µyf y ),( 00 µyf u ]=[0 0]. Thus, the branching point  

)/)(,0(),( 00 mponop gggy +=µ  is a bifurcation point. Due to limited supply voltage in real 

circuits, amplifier’s outputs saturate when the branching parameter is large enough, as shown 

in Fig. 5.  
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Fig. 5 branching diagram when x=0 

D. Bifurcation with excitation 

When x�0 and x is small, the branching diagram in y-µ plane shows discontinuity for 

the two branches of stable equilibriums. Solution of the equation (8) suggests there exists a 

one-one mapping between y and x that when 
a

bx2

0 +< µµ , as shown in Fig. 6. 
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Fig. 6 bifurcation with non-zero excitation 

The solution for 0),,( =µxyf becomes complex when
a

bx2

0 +≥ µµ . One-One 

mapping from x to y turns to be invalid. When 0xx <  , we can find two stable equilibria 

points and an unstable equilibrium. When 0xx > , there will be only one stable equilibrium 

point. 0x  is given by a solution to equation (7) and (11) 

 0
4

)](1[
4

3),,( 2
2

2

=
−+

−−
−+

−=
∂

∂

L

SOCMnnn

L

pp

L

mponop

C
xVV

y
CC

ggg

y
xyf λλβλβµµµ . (11) 

One will get equation (12) combining equation (7) and (11) 

 0
4

)](1[
)

2
(

4

3
)(

2
3/2

2

2

=
−+

++−+
xVVx

ggg SOCMnnn

pp

pp
mponop

λλβ
λβµ

λβµ
µ . (12) 

Solution of (12) suggests that in order to observe bifurcation, one has to limit 

excitation to be a small value, especially when the branching parameter is close to the 

bifurcation point. 

Fig. 4, 5 and 6 all suggest bi-state stability presents in this non-linear system when 

branching parameter oµµ > .This bi-state stability will lead to hysteresis in the amplifier’s 
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DC transfer characteristic. This hysteresis in this supercritical pitchfork bifurcation provides 

a way to detect if branching parameter µ is larger than the bifurcation point or not. 

E. DC gain and its nonlinearity 

Based on the definition used in circuit design area, DC gain at operating point (0,0) 

(either stable or unstable) is the tangent of  ),,( µxyf  at ),0,0( µ  in ),( xy  plane, shown in 

equation (13) 

 
mponop

mn

y

x

ggg
g

f
f

A
µµ

µ
µ −+

−==
),0,0(
),0,0(

),0,0(
.  (13) 

Let 
mp

onop

g

gg +
=0µ , this suggests that at bifurcation point ),0,0( 0µ , the positive 

feedback amplifier will achieve an infinite DC gain. 0µ  is typically smaller than 1. Fig. 7 

illustrates the DC transfer characteristic of the amplifier at bifurcation point. 
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Fig. 7 branching diagram with respect to input at bifurcation point ( 0µµ = ) 

The DC transfer curve in Fig. 7 shows large nonlinearity. From equation (7), we can 

derive the small signal gain (the tangent slope of this DC transfer curve) as 
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This analysis is valid for any µ value. At the operating range,
2

xy
g nn

m

λβ>> , 

)( 22 yxg o +>> βλ , 22 xy ≥ .When 0=µ , 

 

4

2
2)0,,( x

gg

xy
g

A
nn

opon

nn
mn

xy λβ

λβ

++

+
−= . (15) 

For a traditional amplifier, 22 xy ≥ , the numerator will dominate the amplifier’s gain 

nonlinearity. This nonlinearity will limit the performance of certain ADCs using open-loop 

amplifier approach. For an ideal positive feedback amplifier, 0µµ = , 

 

44

3
2

222),,( xy

xy
g

A
nnpp

nn
mn

xy λβλβµ

λβ

µ

+

+
−≈ . (16) 

Equation (16) shows the denominator determines the gain nonlinearity of a positive 

feedback amplifier and suggests that DC gain rolls off in a rate proportional to the output 

swing square. This explains why the positive feedback amplifier shows so strong open-loop 

nonlinearity, which was shown in [12] as a bell-shape curve. 

Equation (16) also suggests that reducing λ will significantly increase open loop gain 

at non-zero outputs given the factor that output conductance of a MOS transistor is 

proportional to channel-length modulation factor λ. Equation (17) gives the detail analysis. 
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 λµ ∝
+

=
mp

onop

g

gg
, 

 232

1
yCx

A
λλ +

∝ . (17) 

The authors [18] showed a relationship between open-loop gain and close-loop gain 

linearity. For a positive feedback amplifier with an infinite DC gain at operating point, the 

gain linearity of a close-loop configuration can be written as (18) 

 )log(20
m

m

x
y

THD ≥ , (18) 

where my is the desired output swing, mx is the input value given a specific DC transfer 

curve. Equation 17) implies that given my  fixed, decreasing λ will reduce mx  dramatically. 

Thus, decreasing λ enhances the gain linearity of a close-loop configuration using the 

positive feedback amplifier. Increasing L is the most effective way to decrease λ. However, 

this will slow down the transistor’s speed. Thus one should take a tradeoff between gain and 

speed for different specifications. 

F. Effect of offset on bifurcation 

All the above analyses assume perfect symmetric matching. However, semiconductor 

fabrication steps will introduce random variation and mismatch from devices to devices, 

from die to die, from wafer to wafer and from lot to lot; imperfect layout will cause 

deterministic mismatch, for example, non common-centroid pattern will introduce linear 

gradient mismatch. In this work, input-referred offset is used to model the asymmetric 

property. Good layout can help to reduce or even eliminate deterministic offset but it can 



www.manaraa.com

 47 

 

never remove random offset. After an amplifier has been fabricated and packaged, offset for 

this amplifier is fixed.  

Assume an amplifier has offset OSV , actual excitation seen by the amplifier is 

OSe Vxx +=  when an external excitation ex  is applied on the amplifier. Thus, the differential 

equation (7) should be modified as 

  )(
4

))]((1[
4

2
3

2

OSe
L

mn

L

OSeSOCMnnn

L

pp

L

ot Vx
C
g

y
C

VxVV
y

C
y

C
g

y +−
+−+

−−−=
λλβλβµ

� , (19) 

where mpoponot gggg µ−+= . 

Equation (19) implies that bifurcation will still happen. The only difference is that the 

whole DC transfer curve will center at the offset voltage instead of the origin. 

G. Possible gain enhancement 

Early discussion has shown that the positive feedback amplifier will achieve an 

infinite DC gain at the bifurcation point. So keeping the amplifier at bifurcation point 

becomes the most important task. However, the positive feedback amplifier is high sensitive 

to process and temperature variations. Previous studies have concluded that a fixed-design of 

the positive feedback amplifier could only gain very little while adding too much more cost. 

Early discussions suggest that we can move the branching-parameter µ  to change 

bifurcation. A fixed design cannot provide such capability of change. Thus we designed a 

variables precise CMOS attenuator [13] to provide sufficient coverage of the branch 

parameter, shown in Fig. 8, and developed specific algorithms to find the bifurcation point.  



www.manaraa.com

 48 

 

M2

M1

M4

M3

M6

M5

d6 d0

M2

M1

M4

M3

M6

M5

d6 d0d6 d0

 

Fig. 8 a digital programmable precise CMOS attenuator 

These control algorithms utilize digital post-processing techniques which could be 

implemented either in programmable micro-controller or hard-wired with application-

specific integrated circuit (ASIC), both in digital CMOS processes. This approach saves cost 

and favors more advanced deep sub-micro CMOS processes.  

Instead of adjusting branching parameter continuously, digital controlled discrete 

branching parameter searching is used. As shown in Fig. 8, this digital programmable precise 

CMOS attenuator consists of three-stage linear MOS attenuators [20] which provide 

necessary quiescent-voltage shift and decreases sensitivity to single transistor size variation 

as well as having a minimal step of ∆ . The first stage linear MOS attenuator has 7-bit control 

(Γ) so the total attenuation (nominal) can be expressed as 

 ∆Γ+= minµµ . (20) 

Design of the discrete step attenuator and bifurcation-tuning guarantees a minimal 

DC gain at operating point expressed in (21) 
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mn
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The positive feedback amplifier achieves a very high DC gain by selecting an optimal 

control code to eliminate the bifurcation. At this condition, we have 0µµ <  

and mpmpoptoponres ggggg ⋅∆<−+=< µ0 . Because of process variations, resg becomes a 

random variable. Without loss of generality, we assume resg  follows a uniform distribution 

between 0 and mpg⋅∆ . With this assumption, we will find that the average gain enhancement 

using bifurcation approach becomes ∞ [19]. Although the random variable resg  may not 

follow the assumption of uniform distribution, average gain enhancement of the positive 

feedback amplifier using our proposed bifurcation-tuning will be sufficient large. 

 

H. Performance summary with 0µµ =  

Table 3-1 Summary for the positive feedback amplifier at bifurcation point 

 Fig. 2 

Tail current I 

Average DC Gain ∞ 

Gain-Bandwidth Product Lmn Cg /  

Phase Margin 90° 

 

Table 3-1 lists the performance summary for the amplifier shown in Fig. 2. Without 

scarifying power efficiency on gain-bandwidth, our proposed amplifier achieved infinite DC 

gain enhancement on average, assuming the proposed searching procedure generates 

uniformly distributed residual conductance. 
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IV. Bifurcation Detection and Parameter Tuning Algorithms 

The above analyses suggest that it is possible to design high performance analog 

amplifiers using bifurcation. However, it is important to know how to properly set the 

branching parameter to be very close to the bifurcation point and, if it is not there, how to 

drive it back. We will construct robust methods to detect bifurcation. Based on the 

bifurcation, we will develop fast and robust algorithms to drive branching parameter µ back 

to the bifurcation point. 

 

A. Bi-state detection with pull-up/down and bifurcation detection algorithm 

Previous analyses suggest two stable equilibria exist when 0µµ > and 0=x  or 

within very small input range. When the output stays at either stable equilibrium, disturbance 

will not change the output state. Fig. 9 illustrates this DC transfer with 0µµ > . 
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Fig. 9 DC transfer of the positive feedback amplifier with large µ 

This leads to a bi-state detection circuit by shorting input and setting initial conditions 

with pull-up/pull-down circuits, as shown in Fig. 10. It consists of the core amplifier, an extra 
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low gain comparator (C1) and two pairs of switches. The amplifier’s output will be set to 

either high or low by pulling up to the positive supply or down to the ground. 

PULL-
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C1 OPULL-
UP

PULL-
DOWN

C1 OPULL-
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PULL-
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Fig. 10 bi-state detection with pull-up/pull-down circuits 

Depending on the bifurcation parameter, the output may finally settle to the same 

value or settle to two different values. If the comparator gives the same results after the pull-

up and pull-down operations, non-bifurcation is determined. On the contrary, if the 

comparator gives different answers from pull-up to pull-down operation, bifurcation is 

detected. These procedures are used to develop the bifurcation detection algorithm called 

Bifurcation_detect(µ), as shown in Fig. 11. This algorithm works well for supercritical 

pitchfork bifurcations.  

Assuming 0µµ > , the positive feedback amplifier will stay at one of these two stable 

equilibria 
pp

onopmp ggg
y

λβµ
µ

2

)(4 +−
±= , which is insensitive to noise. As shown in Fig. 4 and 

5, these two equilibria become large even when µ is a little away from 0µ . One can use a low 

gain comparator to digitalize it easily ( HO  and LO ). We will expect LH OO ≠ when 0µµ >  

while LH OO =  when 0µµ ≤  confidently.  
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Step 0: Make excitation to be 0 (short differential inputs). 

Step 1: pull-up output y to be high (e.g., y=1) 

Step 2: release y and wait y to be stable 

Step 3: >0 decision HO  

Step 4: pull-down output y to be low (e.g. y=-1) 

Step 5: release y, wait y to be stable 

Step 6: >0 decision LO  

Step 7: compare HO  and LO  

If LH OO =  return no 

else return yes 

End 
 

Fig. 11 a bifurcation detection algorithm 

 

B. Branching parameter tuning algorithms 

Assuming oL µµ < , oH µµ > , one cannot observe bifurcation when ],[ oL µµµ ∈  and 

one may observe bifurcation when ],( 0 Hµµµ ∈ . Due to this bi-state monotonic property, we 

can use a linear searching algorithm or a bisection-searching algorithm to drive branching 

parameter µ. 

B.1 Linear searching algorithm 

Assume ],[ HL µµ  is divided into k ( )Nk ∈ equal distance sections
k

LH µµ −
=∆  

Mathematically one can adjust µ  continuously when ∞→k . After the searching is done, 

the amplifier will be in non-bifurcation mode while the branching parameter is in 1LSB 
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range of the ideal bifurcation point oµ .Fig. 12 and Fig. 13 show two possible linear 

searching algorithms. 

Start: Initial Lµµ =  

Loop A: bifurcation_detect(u) 

If (no) 

∆+= µµ :  

Goto A;              

Else 

∆−= µµ :  

Goto B; 

B:   end  
 

Fig. 12 a linear bifurcation parameter searching algorithm from Lµ  

Start: Initial Hµµ =  

Loop A: bifurcation_detect(µ) 

If (yes) 

∆−= µµ :  

Goto A;               

Else 

Goto B; 

B:   end  
 

Fig. 13 a linear bifurcation parameter searching algorithm from Hµ  
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B.2 A bisection-searching algorithm 

Fig. 14 shows this algorithm search oµ within ],[ HL µµ  

Start: Initial
2

LH µµµ +
=  

Loop A: bifurcation_detect(µ) 

If yes 

µµ =:H ; 

2
: LH µµµ +=  

If( εµµ ≤− LH )  

Lµµ =: ; 

Goto B; 

Else 

Goto A; 

Else 

µµ =:L ; 

2
: LH µµµ +
= ; 

If( εµµ ≤− LH ) 

Lµµ =: ;  

Goto B 

Else 

Goto A 

B:   end  
 

Fig. 14 bisection bifurcation parameter searching algorithm 
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All these algorithms use the conceptual circuit illustrated in Fig. 15. 
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Fig. 15 automatic branching parameter searching circuit 

Because a small offset in the amplifier will saturate the output, all these algorithms 

require offset compensation. One high resolution DAC is needed to cancel offset effects. 

C. Improved branching parameter searching algorithm 

Conceptually offset should be pre-compensated before trying to execute the 

bifurcation detection procedure. However, it is not so practical to judge offset in an open-

loop high-gain amplifier. Thus it is nearly impossible to do offset cancellation separately. 

Fortunately, bifurcation detection has the potential to tell both input information and 

bifurcation status information.  

As shown in Fig. 16, the amplifier input range is divided into three regions:  

A: smaller than the lower boundary of bifurcation LB ;  

B: bifurcation region ),( HL BB ;  

C: larger than the upper boundary of bifurcation HB .   

HL BB <  when the bifurcation parameter 0µµ >  and HL BB =  when 0µµ ≤ . Denote 

LH BBL −= . 
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Fig. 16 different results with pull-up/pull-down operations 

Both pull-up and pull-down operations will stay high in region A while stay low in 

region C. In region B, pull-up operation will stay high while pull-down operation will stay 

low. Offset is automatically considered by this type of operations. Thus we can devise this 

pull-up and pull-down operation and use their outputs to adaptively adjust input signal. Input 

signal will be increased if both are high while it is reduced when both are low. When the two 

outputs are different, bifurcation has been detected thus input signal has been in the 

bifurcation window and this fulfills the major function of these operations. 

Based on these observations, a two-loop bifurcation-point searching algorithm was 

proposed—the inner loop of sweeping input and detecting bifurcation while the outer loop 

tuning bifurcation parameter µ. This algorithm is shown in Fig. 17. In our design, the 

attenuator is a N1-bit (7-bit) DAC (Fig. 8) and the input DAC is a N2-Bit (16-bit) pre-

distortion R-2R DAC. Without complicating analysis, both DAC are considered to be 

positive slope with respect to their control codes. 
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b) 

Fig. 17 a) bifurcation-parameter pushing algorithm; b) bifurcation-detecting algorithm 

D. Property of input-side DAC and attenuator DAC 

In order to compensate all possible offset, the DAC should have sufficient coverage. 

Furthermore, all tiny bifurcation windows should be trigged in order to catch possible 

bifurcation with the optimal attenuation factor, it is preferred that all tiny bifurcation 

windows can be triggered in. Simulations show that input of 10uV with 80dB unstable gain 

may cause 0.01V hysteresis output. This 10uV hysteresis input was considered to be 

detectable range specL . Thus a high resolution DAC with analog out )(Θχ  from a digital 
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code Θ is needed. These lead to two main design constraints—sufficient coverage of offset 

and small positive jump in DAC output change, as equation (22) and (23) 

 )2()0( 2
maxmin

NOffsetOffset =Θ<<<=Θ χχ  (22) 

 specL
N

≤Θ−+Θ=
−≤Θ≤

)}()1({max
120 2

χχε χ  (23) 

It turns to be very tedious to get accurate boundary of offset and necessary resolution, 

specifications are based on some experiments and empirical knowledge with sufficient 

margin. That’s why a 16-bit DAC with 0.2V full range was proposed. 

Input-side 16-bit DAC sounds a very expensive, area-consuming and difficult design. 

In reality, it is really a lousy DAC with a small positive step and possible large negative jump 

R-2R DAC. This R-2R ladder has been pre-distorted to be R-1.8R so that no large positive 

jump exists. Fig. 19 shows the 8-bit MSB in the 16-bit DAC transfer. Simulated largest 

positive jump is only 5uV while negative jump can go to 0.01V. 

Fig. 18 shows the 16-bit DAC transfer curve (8-bit MSB is used to illustrate the 

transfer.). Simulated largest positive jump is only 5uV while negative jump can go to 0.01V. 
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Fig. 18 offset compensation DAC characteristic (only 8-MSB was shown) 

A 7-bit monotone attenuator DAC was designed to cover desired attenuation range 

over PVT variations. Fig. 19 shows its transfer characteristics.  
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Fig. 19 attenuator DAC linearity 

E. Implementation of the two-loop binary searching algorithm 

The proposed two-loop optimal bifurcation parameter tuning algorithm can be 

realized in integrated-circuits using finite-state-machine (FSM) approach. The flowchart 

shown in Fig. 17 clearly expressed necessary state-flow. This algorithm is described using 

Verilog HDL and synthesized as a controller with DC (Synopsys tool) with 0.5um standard 

library cells. This controller was floor-planned and routed using DSM module in Cadence. Its 

layout was automatically generated in this flow. Fig. 20 shows the layout. 
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Fig.20 layout of the controller realizing bifurcation searching algorithm 

V. System and Circuit Simulation Results 

Bifurcation detection and branching parameter tuning algorithms are verified in 

MATLAB then transferred into synthesizable HDL codes using Finite State Machine. Digital 

logic part is in HDL codes while all analog circuits are in transistor-level. The main amplifier 

in Fig. 16 has been simulated with 65nm predicted CMOS process as well as 90nm-0.5um 

processes using either industrial BSIM3v3 models or predicted BSIM4 models. The whole 

system was simulated in a mixed-signal environment using Cadence tools.  
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Fig. 21 frequency responses of the amplifier (pre-calibration and post calibration) 

Fig. 21 shows the AC response of the positive feedback amplifier with an automatic- 

searched optimal control code Γ(0101110) (red) and an all-1 control code.  As predicted by 

equation (21), more than 60dB gain enhancement was obtained with 001.0=∆ . 

Fig. 22 shows the automatic control-code searching procedure by the algorithm. 

Because of ∆×Γ+= minµµ , bifurcation presents when Γ is large. After finishing branching 

parameter tuning, the final control code is the same as Γ(101110). 
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Fig. 22 optimal control code searching procedure 

Fig. 23 illustrates DC transfer characteristics of this amplifier with two different 

codes. One can find that the bifurcation parameter-tuning algorithms boost the amplifier’s 

output to a larger value than un-tuned part over all excitation range. 
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Fig. 23 DC transfer characteristics before/after tuning 

Simulation results confirmed that the two-loop bifurcation parameter-tuning 

algorithm works in the same matter as we designed it and this algorithm found an optimal 

control code for the positive feedback amplifier. Furthermore, this algorithm is capable to 

detect more than 80dB gain in the bifurcation case that meets our specification. 

VI. Conclusions 

System dynamics of a CMOS positive feedback amplifier were analyzed and its 

nonlinear bifurcation behavior was discussed. The bifurcation leads to a new easy-to-realize 

detection method in the amplifier output due to memory effect. Thus bifurcation detection 

with pull-up/pull-down circuitry was introduced to reflect the amplifier’s open-loop stability. 

Based on the bifurcation detection and programmable attenuation (functioning as bifurcation 

parameter), a positive feedback amplifier with self-calibration logic was introduced and 

implemented in digital CMOS technology. This method enhanced the amplifier DC gain 

dramatically while maintaining high power efficiency and minimizing hardware cost. 

Extending from traditional circuit design techniques, we developed a robust design method 

for high gain low-voltage compatible amplifiers using parameter dependent bifurcation in 
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dynamical systems. Circuit simulation results match analytical derivation well. Our method 

also makes it possible to use small feature size devices to construct high gain amplifiers with 

low parasitic. Low parasitic helps to enhance speed and reduce parasitic-related nonlinearity 

in systems such as Analog-to-Digital Converters. 

This new design with low cost digital post-process techniques will enhance the 

stability and yield of the positive feedback amplifier dramatically. It will pave the way of 

industrial adoption of positive feedback amplifiers. Furthermore, our approach demonstrates 

the feasibility of high performance analog functionalities in standard digital CMOS. Thus our 

work will contribute to solve the difficult challenges in SOC as well as mixed-signal circuits 

and systems. 
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CHAPTER 4.  NEW LAYOUT STRATEGIES WITH IMPROVED 

MATCHING PERFORMANCE 

Chengming He, Xin Dai, Hanqing Xing, Degang Chen 

 

Abstract 

In this paper, the systematic mismatch error in integrated circuits due to gradient 

effects is modeled and analyzed. Three layout strategies with improved matching 

performance are reviewed and summarized. The hexagonal tessellation pattern can cancel 

quadratic gradient errors with only 3 units for each device and has high area-efficiency when 

extended. Both the Nth-order circular symmetry patterns and Nth-order central symmetry 

patterns can cancel up to Nth-order gradient effects between two devices using 2N unit cells 

for each one. Among these three techniques, the central symmetry patterns have the best-

reported matching performance for Manhattan structures; the circular-symmetry patterns 

have the best theoretical matching performance; and the hexagonal tessellation pattern has 

high density and high structural stability. The Nth-order central symmetry technique is 

compatible to all IC fabrication processes requiring no special design rules. Simulation 

results of these proposed techniques show better matching characteristics than other existing 

layout techniques under nonlinear gradient effects. Specifically, two pairs of P-poly resistors 

using 2nd and 3rd-order central symmetry patterns were fabricated and tested. Less than 

0.04% mismatch and less than 0.002% mismatch were achieved for the 2nd and the 3rd-order 

structures, respectively. 

Key words: matching, symmetry, layout, and pattern  
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I. Introduction 

In VLSI circuits, mismatch errors are the difference between two or more device 

parameters that are desired to be identical. Matching accuracy, to some extent, dominates the 

performance of analog and mixed-signal integrated circuits. For example, matching of 

sampling capacitors in switched-capacitor (SC) circuits directly affects the performance of 

pipelined/cyclic ADCs and SC filters. Matching characteristics of current mirrors play a key 

role in many applications [1, 2]. In modern communications circuits such as quadrature 

modulators, I/Q matching directly affects the image-rejection ratio, which is a key 

performance index. Matching in a differential amplifier limits reduction of even-order 

harmonics, especially the 2nd order harmonic. Layout techniques to handle mismatch errors 

become more important to high-performance circuits design, since even a small amount of 

mismatch may easily hurt the performance of a precision circuit.  

Over the years, great efforts have been made to the study of mismatch and layout 

strategies [3-6]. Previous studies show that the causes of mismatch can be categorized as 

systematic and random variations. The random variations are usually modeled by zero mean 

Gaussian distribution and tradeoffs can be made between area and matching accuracy [4]. 

The systematic variations are process dependent and usually modeled as spatial gradients in 

device parameters. The mismatch due to systematic variations may be at the same level of 

that of random variations [7]. If the random mismatch is reduced by increasing the area, the 

systematic mismatch becomes dominant. Furthermore, increasing area actually make the 

gradient effect more significant. Since mismatch due to systematic variations can cause 

performance degradation, it should be carefully handled and minimized.  
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Despite the widely recognized importance of matching, existing design and layout 

strategies dealing with the systematic mismatch are quite limited. Putting unit cells closely to 

each other reduces the gradient effect, but does not cancel it. The widely used common 

centroid layout pattern can only compensate for linear gradient [8]. Although the fully 

differential structure is robust to even-order harmonics, 2nd order gradients can introduce 3rd-

order harmonics that fully differential structure cannot reduce. This error limits the dynamic 

range of some precision circuits. In this paper, three layout techniques capable of canceling 

mismatch errors due to high-order gradient effects are introduced.  The Nth-order circular 

symmetry [6] and Nth-order central symmetry patterns [9] can cancel mismatch errors 

introduced by linear to Nth-order gradient effects, when each device uses 2N unit cells. The 

hexagonal tessellation pattern [6] can cancel quadratic gradient effect with only 3 units for 

each device and has high area-efficiency. Among these three layout techniques, central 

symmetry patterns have the best matching performance for Manhattan structures; circular-

symmetry patterns have the best theoretical matching performance; and the hexagonal 

tessellation pattern has high density and high structural stability with its honeycomb 

structure. The Nth-order central symmetry technique is compatible to all IC fabrication 

processes requiring no special design rules. These properties are proven by theoretical 

derivation and their matching performance is evaluated using MATLAB simulation. 

The rest of the paper is organized as follows.  In Section II, a general mathematical 

model of gradient effects is given. Section III describes three layout strategies and shows 

how they can cancel nonlinear gradient effects. Section IV gives the simulation results of the 

proposed layout strategies and some measurement results. 
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II. Gradient Modeling 

A two dimensional polynomial function ( , )p x y  can be used to model a parameter at 

the point ( , )x y . A parameter that has linear gradient can be modeled as 

 CyxGyxp += ),(),( 11 ,          (1) 

where ( , )x y  is the coordinate of the point of interest, C is a constant, and 

 ygxgyxG 1,00,11 ),( +=    (2) 

is the linear gradient component of p. 0,1g and 1,0g are the linear gradient coefficients. 

Equation (1) can be easily extended to higher-order cases. Generally, a parameter that has up 

to nth-order gradient components can be modeled as 

 CyxGyxp
n

j
jn +=�

=1

),(),( , (3) 

where  ,
0

( , )
j

k j k
j k j k

k

G x y g x y −
−

=
=�  (4) 

is the jth-order component. kjkg −, ’s are the jth-order coefficients. 

Now consider one of the unit cells composing a device, the parameter of the unit cell 

is the integral of the parameter value over the area of the unit cell. Since the area of the unit 

cell is usually small, the gradient effect over the unit cell is negligible and the parameter of 

the unit cell can be approximated by the parameter at a particular point P in the unit cell. 

Using the location of this point as the location of the unit cell, for a device composed of m 

unit cells located at (x1,y1)…(xm,ym), we can get the device’s parameter as 
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where n is the highest order of the gradient effect. For two devices A and B, ideal matching is 

achieved if the mismatch error 

 0),( =−=Ω BA PPBA . (6) 

Substituting x with (x-x0+x0) and y with (y-y0+y0) in (3), we get 
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Defining the 1st item to be I1 and expending it gives 
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Equation (9) can be rewritten as 

 � � �
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where �k,l is the coefficient of (x-x0)k(y-y0)l assuming x0 and y0  constant. Notice that the order 

of the 2nd term in (8) and the 2nd term in (10) are both no greater than (n-1). That means (8) 

can be expressed in the form of  
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has the same form as Gi(x, y), but with different coefficients. And C’ is a constant. Equation 

(11) shows that the center of nth order gradient can be moved from (0,0) where Gn(x, y)=0 to 

arbitrarily any point (x0, y0) so that Gn(x-x0, y-y0)=0, and this will only introduce lower order 

gradient components. 

III. Three Layout Techniques Canceling High-Order 

Nonlinear Gradient 

3.1 Nth-order central symmetry pattern 

The central symmetrical layout pattern is for 1-1 matching between two devices. A 

description of the pattern is as follows: 

i)  The 1st order form of the pattern is just any common centroid pattern. Such as shown in 

Fig. 1(a) and (b). Common centroid layout pattern ensures the cancellation of linear (1st 

order) gradient error. 

ii) The nth (n>1) order central symmetrical pattern can be defined in terms of the (n-1)st order 

pattern. The nth order pattern is composed of two n-1st order patterns symmetrical to a center 

Cn. There are two cases according to n’s parity: 
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a) If n is odd, the unit cells of each device is central symmetrical around Cn. That means for 

each unit cell of device A at point P, there is another unit cell of device A at point P’ and the 

middle point of segment PP’ is exactly the symmetrical center Cn. 

b) If n is even, the unit cells of the two devices in one of the n-1st order patterns should be 

interchanged so that the position of device A’s unit cells are central symmetrical to device 

B’s unit cells around Cn. That means for each unit cell of device A at point P, there is an unit 

cell of device B at point P’ and the middle point of segment PP’ is exactly the symmetrical 

center Cn. Fig. 2 and Fig. 3 show some high order (n>=2) central symmetrical layout 

patterns. 

The following analysis will show how the central symmetrical layout pattern can 

cancel nonlinear gradient effect. Suppose both device A and device B has m unit cells. 

i) If  n=1, the parameter only has linear gradient effect. According to (5), the parameter of 

device A is 

 � �
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Similarly, the parameter of device B is 
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Fig. 1 examples of 1st order central symmetrical pattern 
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Fig. 2 examples of 2nd order central symmetrical pattern 
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Fig. 3 examples of 3rd order central symmetrical pattern 

 The centroid of a device composed of m unit cells located at (xi, yi), i=1,2,…,m are 

defined as (xc, yc) where 

 �
=

=
m

i
ic x

m
x

1

1
, (15) 
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1

1
. (16) 

 From (13) ~ (16), it is not difficult to derive that (6) holds if and only if xcA=xcB and 

ycA=ycB. This is why common centroid layout pattern can cancel linear gradient effect.  

ii) Assume our proposed nth-order central symmetry layout can cancel mismatch from linear 

to the (n-1)th-order nonlinear gradient. Then if n>1, since the higher order pattern are 

constructed by duplicating lower order patterns, the number of unit cells of each device, m, 

must be an even number. Now consider the two cases according to n’s parity: 
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If n is odd 

Consider device A, according to the layout pattern, for a unit cell Ai at (xAi, yAi), there 

must be another unit cell Am-i at (xAm-i,yAm-i) which meets xAi-xCn=xCn-xAm-i and yAi-yCn=yCn-

yAm-i. Then for any 0 j n≤ ≤ , 
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Choosing x0 and y0 in (11) to be xCn and yCn and substituting (11) to (5) gives 
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Since unit cells of device B have the same central symmetry property, we get 
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Equations (18) and (19) give 
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This means the mismatch due to the nth order gradient effect has been cancelled. 

 If n is even 

According to the layout pattern, for an A’s unit cell Ai at (xAi, yAi), there is a B’s unit 

cell Bi at (xBi, yBi) which meets xAi-xCn=xCn-xBi and yAi-yCn=yCn-yBi . Then 

 ( ) ( ) jn
CnBi

j
CnBi

jn
CnAi

j
CnAi yyxxyyxx −− −−=−− )()( . (21) 

Choosing x0 and y0 in (11) to be xCn and yCn , and then substitute (11) to (5) gives 
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and 
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−
−
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= − − + +� � � . (23) 

Subtracting (23) from (22) still results in (20). 

So the mismatch due to the nth order gradient effect is cancelled for any n>1. Since 

the nth order layout pattern is built from the n-1st order layout pattern, which can cancel the 

first to the (n-1)th order gradient effect, the nth order pattern should preserve this property and 

thus capable of canceling from the linear to the nth order gradient.  

Following this induction approach, it is proven that the Nth-order central symmetry 

layout technique can cancel from 1st up to nth order gradient effect. 

3.2 Nth order circular symmetry pattern 

The circular symmetry layout pattern is initially proposed for 1-1 matching between 

two devices. However, theoretical analysis suggests this layout pattern is capable for multiple 

devices’ matching. A description of the pattern is as follows (each unit cell is modeled with a 

single point): 

A desired device is composed with 2n unit cells and their centers are located on a 

circle with an arbitrary center 0 0( , )x y . The coordinates of these centers are defined in  

 }2,...,1),sin,cos(|{ 00
n

iii iyxX =++ θρθρ , (24) 

 }2,...,1,
2
2

)1(|{ 0
n

ni ii =−+= πθθθ . (25) 
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Fig. 4 illustrates a second order circular symmetry patterns. The following analysis 

will show how the circular symmetry layout pattern can cancel nonlinear gradient effect. 

Using the gradient model (1)-(4), the effect of gradient on a point Ai can be expressed as (26)  

 )sin,cos()( 00 iinin yxpAp θρθρ ++=          (26) 

and the total effect can be expressed by equation (27) 

 �
=

=
n

i
inA ApP

2

1

)( . (27) 

Using trigonometry theory, we can use equation (28) 

 )sin(),,(),,()(
1

00000 ji

n

j
jin jyxgyxgAp φθρρ ++= �

=

 (28) 

to represent (26) with appropriate coefficients. The coefficients are determined by those in 

equations (1)-(4). 

Thus we can extend equation (27) to (29) 
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Define  )sin(),,(
^2

1
00 ji

n

i
jj jyxgvP φθρ += �

=

.  (30) 

Then we will get 
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We will show 0=jvP  using the well known equality 0sin)2sin( =+++ θππθ k . Because 

}2,...,1,
2
2

)1(|{ 0
n

ni ii =−+= πθθθ , for nj ≤ , 

 ��
==

+−+=+
n

i
jnji

n

i

ijjj
^2

1
0

^2

1

]
2
2

)1(sin[)sin( φπθφθ  . (32) 

It is not apparent that equation (32) is identical to zero. However, if j is odd, it is easy 

to show 1
2

2,,2,1,1
−

+ ==−−
n

ii
ijn �πθθ . At such a case, 0=jvP . If j is even, we can express 

oddiskkj m ,2= . It is easy to show that πθθ kiimn =−+−− 12
. 

}2,...,1,
2
2

)1(|{ 0
n

ni ii =−+= πθθθ  can be grouped to m2  exclusive and complete sub sets. At 

both cases, 0=jvP .Thus  

 ),,(2 000 ρyxgP n
A = . (33) 

We call the pattern of n
i iA 2,,2,1, �= an nth-order circular symmetry pattern. One of 

the most important properties of this nth order circular symmetry pattern is rotation-

invariance. This has been shown in our derivations since 0θ  can be any value. 

Mathematically we could place multiple sets of the nth-order circular symmetry pattern in the 

same circle. Thus it is capable of achieving matching among multiple devices. Multiple 

devices’ matching property may have significant advantages in certain applications.  

Thus, we have demonstrated and proven a layout pattern which will sufficiently 

cancel mismatch due to linear gradient and up to the nth order nonlinear gradient. It may 

cancel some higher order nonlinear gradient too. Although the derivations are based on point-
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represents, the conclusion can be applied to a region. Construction of the Nth order circular 

symmetry patter would be as following: 

a) build a unit cell. 

b) place 12 +n  unit cells around a center (rotating the unit cell), the angle between adjacent 

unit cells to the center is n2/π  

c) connect the alternative cells together and form two devices. As shown in Fig. 4b, A and B 

are matching up to the quadratic gradient. 

It is worth to mention the common centroid layout and the 1st order circular symmetry 

layout pattern. With some derivations, it will be shown that the device parameter would be a 

function independent of ρ. That just confirms the 1st order circular symmetry pattern is a 

special common-centroid pattern. In other words, the common-centroid layout is an extended 

version of the first-order circular symmetry layout pattern. 
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(a)       (b) 

Fig. 4 a 2nd-order circular symmetry pattern 
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3.3 Hexagonal Tessellation 

Hexagon, the basic cell of bee nest, has wide applications in communication, 

architecture, chemical engineering and so on because of its high mechanical strength, high 

spatial efficiency. We will show hexagon also is the most concise layout pattern that can 

cancel linear and quadratic gradient completely. Furthermore, we can extend hexagon to 

construct the hexagonal tessellation pattern easily without space-waste. 

Figure 5a shows a hexagon. The coordinates of the six vertexes }3,2,1,{ , =iBA ii  can 

be annotated as 

 }3,2,1),sin,cos(|,{ 00 =++ iyxBA iiii θρθρ , 

 BAaiaii :0;:1}3,2,1,
33

2
)1(|{ 0 ==+−+= ππθθθ . (34) 

For a quadratic gradient (n=2 in equation 5), we can prove that the total gradient is 

not related to θ0. This is illustrated as equation (35) 

 ),,()( 00

3

1
2 ρyxgAp

i
i =�

=
 (35) 

and equation (36) 

 ),,()( 00

3

1
2 ρyxgBp

i
i =�

=
. (36) 

Thus the gradient effects on both A and B are the same. Mismatch due to linear to quadratic 

gradient between A and B is cancelled. 
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Fig. 5b shows a divided hexagon. There are six triangles. Assuming each triangle is 

represented by its center of gravity, the six centers of gravity will form a hexagon in the 

fashion as that in Fig. 5a. Thus the As and Bs in Fig. 5b match with each other. 
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(a)                (b) 

Fig. 5 hexagonal matching pattern 
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Fig. 6 hexagonal tessellation 

As shown in Fig. 6, a hexagon can be extended and filled with As and Bs in a way 

that forms a honeycomb structure. The layout pattern shown in Fig. 6 is named as hexagon 

tessellation. Because honeycomb structure is well known for its compact, high area-efficient 
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and low sensitive to stress, the hexagon tessellation pattern would also have excellent 

matching even under external stress and no area would be wasted. 

IV. Evaluation of Three Layout Patterns and Measurement 

Results 

4.1 Evaluation of proposed layout patterns through simulations 

To evaluate the performance of the proposed layout techniques, we did MATLAB 

simulations on some of the existing layout patterns and the proposed patterns under different 

gradient effects. The layout patterns we chose are 1st order (common centroid) ~ 5th order 

central symmetrical pattern (Fig. 7 (a) ~ (e)), 2nd order circular symmetry pattern (Fig. 7(f)) 

and hexagonal (Fig. 7(g)). Same total device area is assigned for each layout pattern and 

every unit cell is a rectangle. If triangle unit cell is used, the 2nd order circular symmetry 

pattern and hexagonal tessellation pattern shown in Fig. 6 should have much better matching 

performance. Up to 5th order gradient are generated for simulation. When we study the effect 

of kth order gradient, we use kth-order polynomial terms plus constant 1 

 
0

( , ) 1 , 1
k

i k i
k

i

G x y a x y a−

=
= + <<� . (37) 

 The simulation results are summarized in table 4-1 where mismatch is defined by (38) 

 2 100%A B

A B

p p
p p

−Ω = × ×
+

. (38) 
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Table 4-1 Simulation results of different layout patterns 

Highest Order of Gradient 
Mismatch (%) 

1st 2nd 3rd 4th 5th 

Fig. 7 (a) 0 2.77 5.22 7.43 10.39 

Fig. 7 (b) 0 0 0.24 0.87 1.70 

Fig. 7 (c) 0 0 0 0.01 0.068 

Fig. 7 (d) 0 0 0 0 0.0023 

Fig. 7 (e) 0 0 0 0 0 

Fig. 7 (f) 0 0 0 0.026 0.18 

Fig. 7 (g) 0 0 0.26 0.50 2.24 

Fig. 4 (b) 0 0 0 0.017 0.12 

Fig. 5 (b) 0 0 0.17 0.32 1.48 

 

Simulation results show that for n=1,…,5, the nth order central symmetrical pattern 

can cancel up to nth order gradient effect, which is consistent with the previous analysis. 

Furthermore, the hexagonal is the efficient layout to cancel up to 2nd order gradient. The 2nd 

order circular symmetry pattern cancels up to the 3rd order gradient, instead of only the 1st 

and 2nd order gradient as mentioned in [6].In this pattern, the placement of the unit cells of a 

device is central symmetrical around the center of the circle. According to the analysis in 

section II and III, when n=3 is odd, as long as it cancels up to 2nd order gradient, it would 

also cancel the 3rd order gradient. This also implies that the (2n)th-order circular symmetry 

pattern would cancel (2n+1)th-order nonlinear gradient. Compared with these layout 

techniques, the central symmetrical layout is more area efficient and flexible in cell 
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placement. And it is easy to be extended to high order cases for cancellation of any high 

order gradient. 
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Fig. 7 layout patterns used in simulation 

Our layout strategies do not make use of process information and is independent of 

what causes the gradient errors. Therefore, the experimental results only depend on the actual 

gradient errors present, but they should be independent of the process used. This is important 

because process-independent matching property makes our novel layout patterns usable in all 

available process technologies.  

4.2 Validation of proposed layout techniques through measurements 

The proposed Nth-order central symmetry pattern has been verified on silicon. 

Although transistor or capacitor matching might be more interesting, resistors are used in our 
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silicon implementation due to two main reasons. First, the measurement of transistor or 

capacitor matching is significantly more involved than the measurement of resistor matching. 

We want to separate measurement error from gradient-induced mismatch error. Since this 

paper is the first time the layout strategy is introduced, we wanted to make sure that we were 

only comparing the influence of layout on matching errors and measurement quality can be 

easily ensured. Second, at the time of designing the circuit prototype at Silicon Labs Inc, a 

passive complex polyphase filter is specified to achieve better than 70dB image rejection 

ratio (IRR). The complex polyphase filter is composed of resistors and capacitors. According 

to [10], this IRR requires better than 64dB matching performance in both resistors and 

capacitors. Since for the same level of accuracy requirement, capacitor matching is 

significantly easier than resistor matching, a satisfactory capacitor realization has been found 

at the time, achieving the required 64dB-matching, whereas a solution for achieving 64-dB 

matching in resistors remained challenging. For these two reasons, we have selected resistor 

matching as the first vehicle to demonstrate the new layout strategies. Transistor matching or 

capacitor matching can be a future study topic. We believe that our analysis, simulations and 

measurement data are sufficiently to demonstrate the effectiveness of improving matching 

using our proposed new layout strategies.  

Based on random mismatch data on TSMC characterization reports, a specific area 

was allocated to each resistor. The proposed Nth-order central symmetry layout pattern was 

chosen. In order to reduce complexity of layout work, the 2nd-order and 3rd-order pattern 

were adopted and fabricated in 0.13 um CMOS process. P+ type unsilicided poly is used to 

construct the designated resistors due to its low temperature coefficients and low nonlinearity.  

For the 2nd-order pattern as shown in Fig. 8a, one resistor was constructed by paralleling 4 
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identical resistor-units. Each had an area of 1/8 of the total area. For the 3rd-order pattern 

shown in Fig. 8b, each resistor was constructed in a parallel-series connection combining 8 

unit cells in the 3rd-order central symmetry pattern. 

DummyDummy
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B

DummyDummy

DummyDummy
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B

Resistor BResistor B
Resistor AResistor A
Resistor AResistor A
Resistor BResistor B

Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor BResistor B
Resistor AResistor A
Resistor BResistor B
Resistor AResistor A

DummyDummy  

   (a)      (b) 

Fig. 8 two precisely-matched resistor pairs: a) 2nd order; b) 3rd order 

4.2.1 Measurement setup 

1) Resistance measurement 

A resistor nominally has two terminals and is measured directly from these two 

terminals with an Ohmmeter. However, as shown in Fig. 9, wire-resistance would be 

included in this measurement. For a precise resistance measurement, it requires new 

measuring method. 

 

Fig 9 basic method of measuring resistance 
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It has been shown that we can use Kelvin resistance measurement method. Illustrated 

in Fig. 10, it involves the use of both an ammeter and a voltmeter. Ohm's Law defines that 

resistance is equal to voltage divided by current (R = V/I). Thus, we should be able to 

determine the resistance of the subject component if we measure the current going through it 

and the voltage drop across it. 

 

Fig. 10 Kelvin resistance measurement method 

Thus this two-terminal resistor is extended to a four-terminal Kelvin resistor, as 

shown in Fig. 11.  

ResistorResistor

A B

C D

ResistorA B

C D

Resistor

 

Fig.11 Four-terminal resistor simplifying precise resistance measurement 
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2) Measurement of resistance-matching performance 

In our research, we are mainly interested in studying matching performance. Thus we 

can use alternative ways to avoid measuring resistance. Instead, a voltage divider is 

constructed and voltages drops across these two resistors are measured. Kelvin resistor 

structure is still adopted because it removes the wire resistance effect. Fig. 12 illustrates this 

layout. 

The test structures are fabricated and packaged. A special socket and a custom-

designed printed-circuit board were designed to support this package. A DC power supply of 

HP E3611A was connected to N1 and N4 nodes while voltage drops across the two resistor-

pairs were measured by a multi-channel sampling system with more than 16-bit accuracy 

provided by National Instruments. Measurements are automated with National Instruments’ 

software LabView. 

Resistor A Resistor BN1

N2 N3

N4

N5N6

Resistor AResistor A Resistor BResistor BN1

N2 N3

N4

N5N6

 

Fig.12 resistive voltage divider with Kelvin terminals 
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Because noise and socket-landing could affect measurement results, multiple 

measurements with single-landing and multiple-landing are both applied for the same 

resistor, raw data are processed to eliminate wrong data, and finally processed-data are 

statistically analyzed.  

In order to have a high confidence of matching measurements, sufficiently large 

number of devices should be tested. In our project, a few wafers from the same run were used 

and more than 100 dies were measured. Table 4-2 and table 4-3 illustrate the statistical 

measurement results. 

Table 4-2 matching performance of one resistor-pair in 2nd order central symmetry pattern 

 Same resistor pair with 

single-landing 

Same resistor pair with 

multiple-landing 

Large samples 

Mean 0.077% 0.077% 0.04% 

Standard 

deviation 

0.0018% 0.0016% 0.034% 

 

Table 4-3 matching performance of one resistor-pair in 3rd order central symmetry pattern 

 Same resistor pair with 

single-landing 

Same resistor pair with 

multiple-landing 

Large samples 

Mean 0.02008% 0.0205% 0.003% 

Standard 

deviation 

0.0017% 0.0011% 0.038% 
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4.2.2 Discussion of this measurement 

Table 2 and 3 suggest that our proposed 2nd order central symmetry pattern has better 

than 400ppm (0.04%) systematic mismatch and the 3rd order one has better than 30ppm 

systematic mismatch. This confirms that our proposed Nth-order central symmetry patterns 

are effective in improving matching performance. 

However, the proposed 3rd order pattern has more random mismatch than the 2nd 

order one. This can be explained partly by contact and wire-connection mismatches. The 3rd 

order pattern would have more contacts and more interconnections than the 2nd order one. 

According to foundry data, contacts have larger standard deviations than core-resistor. 

Furthermore, as table 1 and 2 show, measurement with single-landing has an error 

less than 0.0018%, measurement with multiple-landing has an error of 0.0016%. This 

suggests equipments have an accuracy of less than 20ppm. This is negligible comparing to 

340-380ppm of the random mismatch in these resistor pairs.  

These two tables also suggest that multiple landing would reduce some standard 

deviation. This is consistent with random noise properties. Ideally we like to measure many 

times for the same resistor-pair to minimize noise effect. However, noise error could be 

ignored comparing to equipment accuracy and designated matching performance. 

On the other hand, we assume the equipments have no systematic offset thus the 

equipments would not affect measured mean values. So this measurement of systematic error 

is accurate within equipment accuracy. 

Fig. 13 illustrates the measured histogram plots. It is clear that pattern b) is more 

symmetric around 0 while pattern a) is somewhat biased toward negative residue which we 

believe is caused by high order gradients. Each has a standard deviation in consistence with 
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TSMC data. If we use 64dB as the decision boundary, we would achieve 84% yield using 

pattern a) and 91% yield using pattern b). If we use 60dB matching as the decision boundary, 

yield is 94% using pattern a) and 100% using pattern b).  From these data, it is clear that the 

systematic error due to linear and nonlinear gradient have been reduced by the proposed 

strategy to a level that they are dominated by random errors. To further reduce mismatch 

and/or improve yield, the total area allocation needs to be increased. 

It would be more persuasive if we compare traditional layout techniques. Even 

though we did not draw any traditional layout patterns by ourselves, we learned that most 

untrimmed passive polyphase filters typically have an IRR smaller than 40dB [11, 12]. This 

low IRR is most likely limited by resistor matching since capacitor matching is much easier. 

Thus, our measurement results would be sufficient to confirm the matching improvement 

using our proposed high-order nonlinear gradient canceling layout patterns. 
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Histogram for pattern a
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Histogram for pattern b
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b) 

Fig. 13 histogram plots of the 2nd order and 3rd order resistor-pairs 
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V. Conclusions 

This paper modeled and analyzed the systematic mismatch due to linear and nonlinear 

gradient effects. Based on the analysis, we proposed three layout techniques capable of 

canceling mismatch errors due to high-order gradient effects. The Nth-order circular 

symmetry [6] and Nth-order central symmetry patterns [9] can cancel mismatch from linear to 

the nth-order gradient between two devices by using 2n unit cells for each one; the hexagonal 

tessellation pattern [6] can cancel quadratic gradient with only 3 units for each device and 

has high area-efficiency. Among these three layout techniques, central symmetry patterns 

have the best reported matching performance for Manhattan structures; circular-symmetry 

patterns have the best theoretical matching performance; hexagonal tessellation pattern has 

high density, high structural stability with its honeycomb structure. The Nth-order central 

symmetry technique is compatible to all IC fabrication processes requiring no special design 

rules. All layout patterns have been mathematically proved and verified through simulation. 

Testing results of the proposed Nth-order central symmetry layout pattern confirmed our 

analysis and simulation.  
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CHAPTER 5. ACCURATE CLOSED-LOOP LINEARITY ESTIMATION 

USING AMPLIFIERS’ OPEN-LOOP DC TRANSFER 

Chengming He, Le Jin, Hanjun Jiang, Degang Chen, Randall Geiger 

Abstract: Linearity is a major specification for both open-loop and closed-loop 

amplifiers. However, it is easier to simulate an open-loop amplifier. Especially, it is simple 

and time-saving to get the DC transfer characteristic for a high-gain amplifier. Based on the 

DC transfer, a simple equation showing the lower-bound of achievable low-frequency total 

harmonic distortion is demonstrated.  

I. Introduction 

A characteristic of development in the semiconductor industry has been that the 

dimensions of new devices and the threshold voltages required to drive them have been 

reduced continuously. With these developments, the performance of transistors becomes 

nonlinear. Under low supply voltage, the need for high gain and a large output swing in 

amplifiers forces designers to exploit the performance of transistors and to design circuits 

working in strongly nonlinear regions. Although engineers make great effort to improve the 

linearity of amplifiers, they cannot eliminate the non-linearity due to the intrinsic 

characteristics of semiconductors. Actual open-loop amplifiers always have nonlinear 

transfer characteristics, especially for positive feedback amplifiers. Such devices show highly 

nonlinear open-loop DC transfer characteristics. Although feedback improves linearity in the 

closed-loop configurations, the exact relationship of the open-loop DC transfer and closed-

loop linearity is unknown. [1][2][3] 
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It is possible to run transient simulation, sample a voltage of interest, and run Fourier 

transformation to get linearity information, mainly harmonic distortion and total harmonic 

distortion. However, such a procedure is time consuming. It is preferred to estimate the 

closed-loop linearity (THD) accurately using the open-loop DC transfer. [4] 

Section 2 introduces a simple amplifier model with a known DC transfer that gives a 

very strong lower-bound total harmonic distortion value in the feedback configuration with 

different feedback factor. Section 3 discusses the effect of the introduction of feedback in a 

closed-loop configuration, which justifies that only odd-order harmonics exist both in the 

open-loop and closed-loop configurations if the DC transfer is an odd function.  

II. A DC-Transfer Based Amplifier Model and Open-Loop 

Equivalent Gains 

For large signal swing and global analysis, all operational amplifiers will work in the 

nonlinear state. The linear models for amplifiers are simple approximations to the real 

situation and only work well for small signal swing and local analysis. If circuits perform 

well, signal swing in the circuits can no longer be kept “small” compared with the supply 

voltage. A simple method is needed to estimate linearity performance before running time-

consuming simulations and FFT processing. 

The present research replaces the bottom-up method from transistor level for 

modeling nonlinear amplifier characteristics with a top-down method. Static behavior of an 

operational amplifier is described by the DC transfer characteristic in which voltage is used 

for both input and output.  
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II.1 An amplifier’s DC transfer 

Fig. 1 shows a typical DC transfer characteristic for an amplifier. As illustrated in 

Fig. 1, the input is denoted as x while the output is denoted as y. The DC transfer is described 

by an odd function expressed in equation (1) 

 )(xfy = ,  

 )()( xfxf −=− . (1) 

)(xf  will have properties such as  

 0)(' >xf .  (2) 
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Fig. 1 DC transfer of a general amplifier 
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As shown in Fig. 1, in given output range ],0[ OV , the DC transfer )(xf  can be bound 

in a set ],[ ΛΓ  such that 

 xxfx Λ≤≤Γ )( . (3) 

Depending on the output range, Γ  is dependent on the output range, while Λ is the absolute 

value of the maximum slope. In the case of a practical amplifier, Λ is the absolute slope of 

the DC transfer at origin or the gain at the operating-point. 

II.2 Linearity enhancement by feedback 

Fig. 2 illustrates a conceptual feedback configuration using the amplifier described in 

Fig. 1.  

vin vo
vi f()vin vo
vi f()

 

Fig. 2 Unit feedback amplifier 

Assuming the amplifier has infinite bandwidth, it can be shown that 

 oini vvv −= , (4) 

and  

 )()( oinio vvfvfv −==  (5) 

With )(1
ooini vfvvv −=−= , we can obtain 0)(1 ≥= −

oooi vvfvv . 

If the amplifier shown in Fig. 1 has nonlinearity, feedback will improve linearity, but 

output would still be distorted. Assuming the input in the feedback amplifier is a single 
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frequency sinusoid waveform, the output and the internal node would be the sum of different 

harmonics with the same base frequency using the Fourier extension. 

 tAvin ωsin= , 0>A , 

 �
=

=
N

i
iio tAv

1

sinω , 

 �
=

=
N

i
iii tBv

1

sinω . (6) 

Then equation (4) can rewritten as (7) 

               tAtkAtkB
k k

kk ωωω sinsinsin
1 1

=+� �
∞

=

∞

=

. (7) 

With the condition in equation (3), we can obtain 

    2

11 1

)sin(
1

sinsin �� �
∞

=

∞

=

∞

= Λ
≥

k
k

k k
kk tkAtkAtkB ωωω . (8) 

It is known that harmonics must be balanced in (7). This leads to equation (9)  

 11 AAB −= , kk AB −=  for 2≥k . (9) 

Equations (8) and (9) yield (10) 

 ��
∞

=

∞

= Λ
≥−−

2

2

2

2
11

1
)(

k
k

k
k AAAAA , (10) 

and then (11)  

 �
∞

=Λ
+≥

1

2
1 )

1
1(

k
kAAA . (11) 

Similarly, it can be shown that �
∞

=Γ
+≤

1

2
1 )

1
1(

k
kAAA . 
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Because �
∞

=Λ
+≥

1

2
1 )

1
1(

k
kAAA , it is true that 0)

1
1( 2

11 ≥
Λ

+≥ AAA . This leads to an  

inequality (12) 

  0)
1

1( 1 ≥
Λ

+≥ AA . (12) 

It is also true that inequality (13) is valid based on condition (3) 

 21 )( ioo vvfv Γ≥− , 

 2

11 1

)sin(sinsin �� �
∞

=

∞

=

∞

=

Γ≥
k

k
k k

kk tkBtkAtkB ωωω . (13) 

By integrating (13) in a cycle, inequality (14) results 
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=

Γ+−Γ=Γ≥−−
2
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2

2
11 )()(

k
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k
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k AAABAAAA . (14) 

Thus we get �
∞

=

≥Γ+≥−Γ−Γ+
2

2
11 0)1()]()1[(

k
kAAAAA , 0)1( 1 ≥Γ−Γ+ AA , 1)

1
1( AA

Γ
+≤ . 

Together with equation (12), we obtain �
∞

=Λ
+≥≥

Γ
+

1

2
1

2
1 )

1
1()

1
1(

k
kAAAA . Rearranging the 

terms yields a new inequality �
∞

=Λ
+≥

Λ
−

Γ 2

22
1 )

1
1()

11
(

k
kAA . This is equivalent to  

 2
1

2

2
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11

(
)

1
1(

1
A

A
k

k�
∞

=≥
Λ

−
Γ

Λ
+

. (15) 

The inequality (15) sets the lower bound of low frequency linearity performance of a 

unity-gain feedback configuration. In addition to the unity-gain feedback configuration, it is 

worth considering a general feedback configuration with a feedback factor of β . 



www.manaraa.com

 101 

 

vin vo
vi f()vin vo
vi f()

 

Fig. 3 a feedback configuration with a feedback factor β  

Using voltage approach, we have 

 oini vvv β−= , (16) 

 )()( oinio vvfvfv β−== . (17) 

Thus )(1
ooini vfvvv −=−= β , oooi vvfvv )(1−= . 

Using the same approach for a unity-feedback configuration, the result is distortion 

for the closed-loop configuration. 

We assume the same stimulus is used in the feedback amplifier, tAvin ωsin= , 0>A . 

The output and the internal node would be the sums of all possible harmonics, i. e., 

�
∞

=
=

1

sin
k

ko tkAv ω , �
∞

=
=

1

sin
k

ki tkBv ω .  

By replacing corresponding terms equation (16)  can be rewritten as (18) 

         tAtkAtkB
k k

kk ωωβω sinsinsin
1 1

=+� �
∞

=

∞

=

. (18) 

This suggests that 11 AAB β−= , kk AB β−= . Based on the condition (3), we can derive an 

inequality (19) 
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11 1

)sin(
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sinsin �� �
∞
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=
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≥
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k

k k
kk tkAtkAtkB ωωω .  (19) 
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By integrating the two sides of the inequality (19) over time and replacing kB  by kA ’s 

function,  a new inequality is derived as (20) 
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which is the same as (21) 
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From (21) we can derive a new inequality 

  0)
1

( 1 ≥
Λ

+≥ AA β . (23) 

Because |||)(||| iio vvfv Γ≥= , 21 ||)( iiooo vvvvfv Γ≥=− . Using the harmonic denotations 

yields inequality (24) 
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By integrating the inequality (24) over time, a new inequality (25) is the result: 
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The inequality is the same as inequality (26) 
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Because 0)
1

( 1 ≥
Λ

+≥ AA β , thus 01 ≥− AA β  thus 0)1( 1 ≥Γ−Γ+ AAβ .This suggests  

1)
1

( AA
Γ

+≤ β . Finally we derive a new inequality (27) 
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Inserting the first harmonic term in the left yields a new inequality (28) 
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k
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Thus, it is possible to estimate a total harmonic distortion at low frequency as (29) 
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1
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Λ
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Λ
−

Γ
Λ
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�
∞
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A
THD k

k

. (29) 

The expression (29) gives an upper bound of the largest possible low-frequency total 

harmonic distortion in an amplifier with the DC transfer in Fig. 1. As shown in Fig. 1, the 

coefficient Γ  depends on the output level, the smaller the output, the closer to Λ .This means 

the THD will be small if there is a small output. For a linear amplifier, Λ=Γ  and there is no 

distortion at all.   

Based on the inequality (29), a linearity index LI can be defined as 

 
Γ−Λ

ΓΛ=LI . (30) 

Then the total harmonic distortion can be rewritten in decibel form 

 βlog20log20 −−≤ LITHD .  (31) 
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For a unity-gain feedback configuration, MATLAB simulations confirmed this 

relationship. If the transfer is smooth, it is possible to estimate the THD more precisely as 

equation (32) [4] 

 )(12log20 dBLITHD −−= . (32) 

MATLAB simulations confirmed these analyses and Table 5-1 summarizes the 

simulation results for the unity-gain feedback case.  

Table 5-1 Estimated THD and simulated THD for close-loop amplifiers’ output 

Λ Γ LI 

 

THD(est.) 

(dB) 

THD(sim.) 

(dB) 

10 9.99 10000 -92 -92.3 

100 90.91 1000 -72 -72.31 

100 98.04 5,000 -85.98 -86.3 

100000 991 1001 -72.009 -72.0566 

1000000 999 1000 -72 -72.056 

100000 9,091 10000 -92 -92.043 
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III. Possible Harmonics in an Amplifier with Odd-Symmetry 

DC Transfer 

Assume the amplifier has odd-symmetry DC transfer, as shown in Fig. 1, 

)()( ii vfvf −−= . This suggests that at DC 12

0
12

+
∞

=
+�= k

i
k

ko vCv . Assuming the amplifier has an 

infinite bandwidth and there is no delay in the feedback network (shown in Fig. 3), the result 

is �
∞

=
=

1

sin)(
k

ko tkAtv ω , �
∞

=
=

1

sin)(
k

ki tkBtv ω  when tAtvin ωsin)( =  . Then 

 12

10
12 )sin( +

∞

=

∞

=
+ ��= j

j
j

k
ko tjBCv ω . (33) 

In this expression, there are no even-odd harmonics; that is, 02 =kA . Because 

11 AAB β−= , kk AB β−= , 02 =kB . 

This analysis only applies to an amplifier with an infinite bandwidth. For a finite 

bandwidth amplifier, more thorough analyses are required.   

To simplify the model, the amplifier is modeled such that it has infinite input 

impedance and a nonlinear output conductance (shown in Fig. 4). To model the odd-

symmetric DC transfer, the output conductance is modeled by an even function 

0)()( ≥−= oooo vgvg . 
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Fig. 4 a simple model of an amplifier 

Thus at DC, 
))(()(
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io

im

oo

im
io vfg
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vfv ===  and 
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im

io

im

io

im
i vf

vfg
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vfg
vg

vf −=−=
−

−=
−

−=− . (34) 

This suggests there would be no even-order harmonic at DC. 

When frequency goes high, a TDE would be introduced to study the dynamics of the 

feedback system. This is denoted as equation (35) 

 tBvvCvH
dt

dv
ooo

o ωsin)(* ++= , (35) 

where 0<−=
C

mg
H

β
, 0>=

C
g

B m , o
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o v
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vC ∀≤−= ,0
)(

)( . Let 

2
ovV = , tBvvvCHtBvvvCHvvvV ooooooooo ωω sin)]([2sin2)(222 222' ++=++==

•
. When 

||||
H
B

vo > , 0<
•

V . Thus |)||,|(
H
B

H
B− is the positive invariant set of V. According to [5], a 

unique periodic solution )()( Ttvtv oo +=  exists for the non-linear differential equation. It is 

known that a periodic function can be expanded into Fourier series as (36) and (37) 

          ZktvFSwhereeVtv okk
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)),((,)( ω , (36) 
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Replacing the node voltage in (35) with the Fourier expansion yields (38) 
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which satisfies the harmonic balance equations: 
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Now assuming V2k=0,   

 �
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Thus, C2k=0 since 
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C2k=0 and V2k=0 therefore satisfy the harmonic balance equations (38) and equation (40) is 

also a possible solution for the nonlinear differential equation (35). In the virtue of 

uniqueness, no even-order harmonic components exist in the output signal. Thus, it is 

confirmed there will be no even-order harmonic in an amplifier with odd-symmetry DC 

transfer in open-loop and closed-loop configurations. 

IV. Conclusions 

Because of the intrinsic nonideality of semiconductor devices, low-voltage, high-gain, 

open-loop amplifiers exhibit high nonlinearities. It always turns to be a confusing problem 

for circuit designers to make gain measurement and understand the non-ideality of close-loop 

configuration due to the nonlinearity of open-loop amplifiers. To solve this problem, a simple 

but effective model for nonlinear open-loop amplifiers is given, and the small-signal gain and 

large-signal gain are defined. Based on this model and the gain definitions, the nonidealities 

of feedback amplifiers with resistor networks for different considerations are inspected. 

Three equivalent gains are defined for different cases. An effective THD estimation method 

is given based on the definition of linear index. It is obvious that clarified gain definitions for 

nonlinear open-loop amplifiers help to identify the nonidealities of feedback amplifiers. 
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CHAPTER 6 GENERAL CONCLUSIONS 
 

The present work studied high-gain amplifier design using positive feedback 

techniques and focused on yield improvement. A CMOS amplifier was designed, 

fabricated, and measured to have high gain and high yield. Analysis, simulations and 

measurement results all confirmed this amplifier is suitable for very low-voltage, sub-

100nm, digital CMOS processes. The use of nonlinear dynamical systems theory in 

positive feedback amplifier design was novel. The resulting bifurcation-detection 

methods were critical to achieving the desired robustness with respect to process 

variation, by enabling an all digital strategy for post process auto-tuning. Some adaptive 

calibration algorithms based on bifurcation were developed and analytical derivations 

suggested, and simulations confirmed, these algorithms would improve the positive-

feedback amplifier’s gain over processes, supply voltages, and temperature variations. 

The present work also studied three layout techniques to improve one-to-one 

matching in IC processes. These new layout techniques are capable of canceling 

mismatch due to both linear and nonlinear gradients. The Nth-order circular symmetry 

and Nth-order central symmetry patterns, can cancel mismatches from linear to the nth-

order gradient between two devices by using 2n unit cells for each one; the hexagonal 

tessellation pattern can cancel quadratic gradient with only 3 units for each device and 

has high area-efficiency. Among these three layout techniques, the Nth-order circular 

symmetry pattern has the best matching performance between 2 identical elements; 

central symmetry patterns have the best reported matching performance for Manhattan 

structures; the hexagonal tessellation pattern has high-density, high structural stability 

with its honeycomb structure. The Nth-order central symmetry technique is compatible 

with all IC fabrication processes requiring no special design rules. All layout patterns 
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have been mathematically proven and verified through simulation. Testing results 

confirmed excellent matching of the Nth-order central symmetry layout pattern. 

Because high gain amplifier is one of the most fundamental building blocks for 

analog/mixed-signal circuits and systems, any progress in its design contributes to the 

evolution of integrated circuit design. Matching is one most critical property for circuits 

to achieve good performance. Without good matching, many circuits and systems will fall 

apart from performance. ITRS has predicted that it becomes more and more difficult for 

analog design and matching continues to deteriorate in the advanced CMOS processes. 

Our research results help to overcome part of these challenges. The present work 

provides a high gain amplifier capable operating in low-voltage digital CMOS, making it 

an important candidate for high performance analog/mixed-signal system-on-chips. The 

high gain amplifier can be used in high speed analog-to-digital converters, switched-

capacitor filters and other analog-intense application. Our new layout techniques partly 

overcome or compensate matching degrading in the advanced processes thus help 

improve circuit performance. With our new layout strategies, it simplifies the work of 

designing high performance circuits. In addition to improving resistors’ matching in our 

project, these techniques are universal to other devices’ matching performance, either 

passive or active, in either integrated circuits or printed-circuits boards. Our new layout 

techniques can be utilized in all commercial/research fabrication processes which include 

CMOS, GaAs, InP and others. Beyond enhancing matching in IC fabrications, the 

matching techniques find applications in built-in tests, performance characterizations, 

instruments calibration, and so on. 

 Future research can be extended to adopt more researches from different fields 

into high performance circuit design, finding new applications for present work, study 

matching properties among arbitrary number of ‘identical’ devices and develop new 

techniques to enhance matching among multiple devices.  
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